Rogue Wave banner
Top of DocumentContents

Topic Index

Click on one of the letters below to jump immediately to that section of the index. If you get no response, that letter has no entries.

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P

Q R S T U V W X Y Z

a


addIntercept [in 5.2.2 Intercept Option]
analysis of variance for a linear regression [in 5.4.1 Class RWLinearRegressionANOVA]
assumptions [in 1.4.2 Assumptions]

b


backward selection [in 4.2.3 Backward Selection ]
base calculation [in 2.3.1 The Base Calculation]
base class RWRegression [in 5.1 Overview]
bibliography [in Chapter 6 - References]
binary outcome data [in 3.3 Logistic Regression]
body class

c


calculation methods for logistic regression [in 5.5.2 Calculation Methods for Logistic Regression]
calculation methods
chi-squared distribution
class herarchy
class hierarchy notation [in 1.4.5 Class Relationship Notation]
class hierarchy
class relationship notations [in 1.4.5 Class Relationship Notation]
components of Analytics.h++ [in 2.1 Components]
confidence interval [in 3.2.6 Prediction Intervals]
constructing a regression object [in 5.2.2 Intercept Option]
contacting [in 1.5.2 How to Contact Technical Support]
conventions
critical value

d


data change objects [in 2.3.1 The Base Calculation]
default intercept option [in 5.2.2 Intercept Option]
deviance
dispersion matrix [in 3.2.3 Parameter Dispersion (Variance-Covariance) Matrix]
documentation [in 1.4 Documentation]

e


ellipses [in 1.4.4 Class and Function Naming]
equal mass binning [in 3.3.3.3 Hosmer-Lemeshow Statistic]
European phone numbers [in 1.5.2 How to Contact Technical Support]
example
exhaustive search [in 4.2.1 Exhaustive Search]

f


F statistic [in 5.6.1 Selection Evaluation Criteria - Function Objects]
F statistic
features [in 1.2 Product Features]
fitted regression [in 3.2.1 Parameter Calculation by Least Squares Minimization]
forward selection [in 4.2.2 Forward Selection]
function objects

g


G statistic [in 3.3.3 Significance of the Model]
G statistic [in 3.3.3.1 G Statistic]
Galton, Francis [in 3.2 Multiple Linear Regression]
goodness of fit
groups for predictor variable

h


handle class
handle functions [in 5.2.1 Updating Parameter Estimates]
Hosmer-Lemeshow statistic [in 3.3.3 Significance of the Model]
Hosmer-Lemeshow statistic [in 3.3.3.3 Hosmer-Lemeshow Statistic]

i


intercept option [in 5.2.2 Intercept Option]
intercept option
intercept parameter [in 3.2 Multiple Linear Regression]
intercept [in 5.2.2 Intercept Option]
iterative least squares [in 5.5.2.1 RWLogisticIterLSQ]

l


least squares minimization [in 3.2.1 Parameter Calculation by Least Squares Minimization]
Levenberg-Marquardt method [in 5.5 Parameter Calculation Classes]
Levenberg-Marquardt method [in 5.5.2.2 RWLogisticLevenbergMarquardt]
likelyhood ratio test [in 3.3.3.1 G Statistic]
log likelihood [in 3.3.1 Parameter Calculation]
logistic regression [in 3.3 Logistic Regression]
logistic regression

m


Mallow's statistic [in 5.6.3 Writing Your Own Function Objects]
manual organization [in 1.4 Documentation]
method of least squares [in 3.2.1 Parameter Calculation by Least Squares Minimization]
method of maximum likelihood [in 3.3.1 Parameter Calculation]
model selection classes [in 2.4 Model Selection Classes]
model selection classes
model selection tools [in 4.1 Definition]
model selection viewed as search [in 4.2 Model Selection Viewed As Search]
model selection [in 4.1 Definition]
model selection
model variance [in 3.2.2 Model Variance]
multiple linear regression parameter calculation [in 5.5.1 Calculation Methods for Linear Regression]
multiple linear regression problem [in 3.2 Multiple Linear Regression]

n


Newton-Raphson method [in 5.5.2.1 RWLogisticIterLSQ]
noIntercept [in 5.2.2 Intercept Option]

o


object-oriented technology [in 1.4.2 Assumptions]
online documentation [in 1.4.1 Online Documentation]
online documentation
optimizing computational speed [in 2.3.1 The Base Calculation]
overall F statistic [in 3.2.4 Significance of the Model (Overall F Statistic)]

p


P-value [in 5.6.1 Selection Evaluation Criteria - Function Objects]
P-value
parameter calculation classes [in 2.3 Parameter Calculation Classes]
parameter calculation classes
parameter calculation for logistic regression [in 5.5.2 Calculation Methods for Logistic Regression]
parameter calculation [in 5.5 Parameter Calculation Classes]
parameter calculation
parameter calculations
parameter dispersion matrix [in 3.2.3 Parameter Dispersion (Variance-Covariance) Matrix]
parameter estimate classes [in 5.3 Parameter Estimate Classes]
parameter estimate
parameter variances and covariances [in 3.3.2 Parameter Variances and Covariances]
Pearson statistic [in 3.3.3 Significance of the Model]
Pearson statistic [in 3.3.3.2 Pearson Statistic]
phone numbers [in 1.5.2 How to Contact Technical Support]
prediction intervals [in 3.2.6 Prediction Intervals]
predictions of a logistic regression model [in 3.3.3.3 Hosmer-Lemeshow Statistic]
predictor data matrix [in 3.2.1 Parameter Calculation by Least Squares Minimization]
predictor variable [in 3.2 Multiple Linear Regression]
predictor variable [in 3.2 Multiple Linear Regression]
predictor variable

q


QR method with pivoting [in 5.5.1.2 RWLeastSqQRPvtCalc]
QR method [in 5.5.1.1 RWLeastSqQRCalc]

r


reCalculateParameters() [in 5.2.1 Updating Parameter Estimates]
regression analysis classes [in 5.4 Regression Analysis Classes]
regression classes [in 2.2 Regression Classes]
regression classes
regression matrix [in 3.2 Multiple Linear Regression]
residual sum of squares [in 3.2.1 Parameter Calculation by Least Squares Minimization]
residuals [in 3.2.1 Parameter Calculation by Least Squares Minimization]
response variable [in 3.2 Multiple Linear Regression]
response vector [in 3.2 Multiple Linear Regression]
RWLeastSqQRCalc [in 5.5.1.1 RWLeastSqQRCalc]
RWLeastSqQRPvtCalc [in 5.5.1.2 RWLeastSqQRPvtCalc]
RWLeastSqSVDCalc [in 5.5.1.3 RWLeastSqSVDCalc]
RWLinearRegression [in 5.1 Overview]
RWLinearRegressionANOVA [in 5.1 Overview]
RWLinearRegressionANOVA [in 5.4.1 Class RWLinearRegressionANOVA]
RWLinearRegressionFTest [in 5.1 Overview]
RWLinearRegressionFTest [in 5.4.3 Class RWLinearRegressionFTest]
RWLinearRegressionParam [in 5.3 Parameter Estimate Classes]
RWLinRegModelSelector<F> [in 5.6 Using the Model Selection Classes]
RWLinRegModelSelector<F> [in 5.6.3 Writing Your Own Function Objects]
RWLogisticFitAnalysis [in 5.1 Overview]
RWLogisticFitAnalysis [in 5.4.2 Class RWLogisticFitAnalysis]
RWLogisticIterLSQ [in 5.5.2.1 RWLogisticIterLSQ]
RWLogisticLevenbergMarquardt [in 5.5.2.2 RWLogisticLevenbergMarquardt]
RWLogisticRegression [in 5.1 Overview]
RWLogisticRegressionParam [in 5.3 Parameter Estimate Classes]
RWLogRegModelSelector<F> [in 5.6 Using the Model Selection Classes]
RWRegression [in 5.1 Overview]

s


search algorithms
setCalcMethod() [in 5.5 Parameter Calculation Classes]
significance
simple linear regression [in 3.2 Multiple Linear Regression]
singular value decomposition [in 5.5.1.3 RWLeastSqSVDCalc]
software requirements [in 1.3 Software Requirements]
stepwise selection [in 4.2.4 Stepwise Selection]

t


T statistic [in 3.2.5 Significance of Predictor Variables]
T statistic [in 3.2.5.2 Critical Values]
technical support [in 1.5 Technical Support]
technical support [in 1.5.2 How to Contact Technical Support]
technical support [in 1.5.2 How to Contact Technical Support]
template parameter F [in 5.6.1 Selection Evaluation Criteria - Function Objects]
testing the null hypothesis [in 3.2.4 Significance of the Model (Overall F Statistic)]
transpose of the regression matrix [in 3.2.3 Parameter Dispersion (Variance-Covariance) Matrix]

u


unbiased estimator of variance [in 3.2.2 Model Variance]

v


variance [in 3.2.2 Model Variance]
variance-covariance [in 3.2.3 Parameter Dispersion (Variance-Covariance) Matrix]
variances and covariances [in 3.3.2 Parameter Variances and Covariances]

w


Wald chi-square statistic [in 3.3.4 Parameter Significance (Wald Test)]

Top of DocumentContents

©Copyright 1999, Rogue Wave Software, Inc.
Contact Rogue Wave about documentation or support issues.