SourcePro® API Reference Guide

Product Documentation:
   SourcePro
Documentation Home
List of all members | Static Public Member Functions
RWQRCalc< TypeT > Class Template Reference

Computes the QR decomposition of a matrix using the LAPACK functions xgeqpf (with pivoting) or xgeqrf (no pivoting). More...

#include <rw/lapack/qrcalc.h>

Static Public Member Functions

static bool computeQR (RWGenMat< TypeT > &A, RWMathVec< TypeT > &tau, int *const pivots)
 
static bool computeQR (RWGenMat< TypeT > &A, RWMathVec< TypeT > &tau, long *const pivots)
 

Detailed Description

template<class TypeT>
class RWQRCalc< TypeT >

Computes the QR decomposition of a matrix A using the LAPACK functions xgeqpf (with pivoting) or xgeqrf (no pivoting). This class may be used as the QRCalc template parameter for the classes RWQRDecomp, RWQRDecompServer, RWLeastSqQR and RWCODecomp.

Synopsis
#include <rw/lapack/qrcalc.h

Member Function Documentation

template<class TypeT >
static bool RWQRCalc< TypeT >::computeQR ( RWGenMat< TypeT > &  A,
RWMathVec< TypeT > &  tau,
int *const  pivots 
)
static

Parameters:

On entry, A is the M-by-N matrix for which the QR decomposition is being computed. On exit, the upper triangle of the array contains the min(M,N)-by-N upper triangular matrix R; the elements below the diagonal, together with the vector tau, represent the orthogonal matrix Q as a product of min(m,n) elementary reflectors.

If pivots != null, then on entry, if pivots[i] != 0, the i-th column of A is permuted to the front of A*P (a leading column); if pivots(i) == 0, the i-th column of A is a free column. On exit, if pivots[i] = k, then the i-th column of A*P was the k-th column of A. If pivots == null, pivoting is not done.

template<class TypeT >
static bool RWQRCalc< TypeT >::computeQR ( RWGenMat< TypeT > &  A,
RWMathVec< TypeT > &  tau,
long *const  pivots 
)
static

Parameters:

On entry, A is the M-by-N matrix for which the QR decomposition is being computed. On exit, the upper triangle of the array contains the min(M,N)-by-N upper triangular matrix R; the elements below the diagonal, together with the vector tau, represent the orthogonal matrix Q as a product of min(m,n) elementary reflectors.

If pivots != null, then on entry, if pivots[i] != 0, the i-th column of A is permuted to the front of A*P (a leading column); if pivots(i) == 0, the i-th column of A is a free column. On exit, if pivots[i] = k, then the i-th column of A*P was the k-th column of A. If pivots == null, pivoting is not done.

Copyright © 2021 Rogue Wave Software, Inc., a Perforce company. All Rights Reserved.