#include <rw/analytics/logregress.h>
#include <iostream>
int main()
{
[1 234 2 431 3 333 4 654 5 788]";
obsData[0] = obsData[3] = obsData[4] = true;
obsData[1] = obsData[2] = false;
{
return 0;
}
double sigLevel = .05;
for (
size_t i = 0; i < params.
length(); i++ )
{
std::cout << "Model parameter " << i
<< (i==0 ? " Intercept:" : ":") << std::endl;
std::cout << " value: "
<< params[i].value() << std::endl;
std::cout << " standard error: "
<< params[i].standardError() << std::endl;
std::cout << " Wald statistic: "
<< params[i].waldChiSqStatistic() << std::endl;
std::cout << " Wald statistic P-value: "
<< params[i].waldChiSqStatPValue() << std::endl;
std::cout << " Wald statistic critical value: "
<< params[i].waldChiSqStatCriticalValue(sigLevel)
<< std::endl;
std::cout << " " << sigLevel << " confidence interval: " << "["
<< params[i].confidenceInterval(sigLevel).lowerBound()
<< ", "
<< params[i].confidenceInterval(sigLevel).upperBound()
<< "]" << std::endl;
}
return 0;
}