Class Name | Type | Header File |
---|---|---|
Encapsulates the eigenvalues and eigenvectors of a symmetric matrix, a Hermitian in the complex case. | rw/lapack/symeig.hrw/lapack/hermeig.h | |
An abstract base class for the symmetric eigenvalue servers. | rw/lapack/seigsrv.h | |
An abstract base class for the Hermitian eigenvalue servers. | rw/lapack/heigsrv.h | |
Servers for the positive definite QR method of computing eigenvalues. These servers apply only to matrices that you know are positive definite. | rw/lapack/seigsrv.hrw/lapack/heigsrv.h | |
Servers for the QR method of computing eigenvalues. | rw/lapack/seigsrv.hrw/lapack/heigsrv.h | |
Symmetric eigenvalue server classes, which allow the computation of only the eigenvalues in a given range and (optionally) their corresponding eigenvectors. | rw/lapack/seigsrv.h rw/lapack/heigsrv.h | |
Servers for the root-free QR method of computing eigenvalues. This method computes all the eigenvalues and no eigenvectors. | rw/lapack/seigsrv.h rw/lapack/heigsrv.h | |
Symmetric eigenvalue server classes and the Hermitian eigenvalue server class, respectively, allow the computation of a subset of the eigenvalues and (optionally) their corresponding eigenvectors. | rw/lapack/seigsrv.hrw/lapack/heigsrv.h | |
A tridiagonal decomposition of a symmetric matrix A: A=Q’TQ where Q is orthogonal and T is tridiagonal and real. | rw/lapack/td.h |