Symmetric Eigenvalue Decomposition Classes
The Linear Algebra Module provides a number of objects for solving symmetric eigenvalue problems. The Symmetric Eigenvalue Decomposition Classes are contained in Table 4.
Table 4 – The Symmetric Eigenvalue Decomposition Classes 
Class Name
Type
Header File
Encapsulates the eigenvalues and eigenvectors of a symmetric matrix, a Hermitian in the complex case.
rw/lapack/symeig.hrw/lapack/hermeig.h
An abstract base class for the symmetric eigenvalue servers.
rw/lapack/seigsrv.h
An abstract base class for the Hermitian eigenvalue servers.
rw/lapack/heigsrv.h
Servers for the positive definite QR method of computing eigenvalues. These servers apply only to matrices that you know are positive definite.
rw/lapack/seigsrv.hrw/lapack/heigsrv.h
Servers for the QR method of computing eigenvalues.
rw/lapack/seigsrv.hrw/lapack/heigsrv.h
Symmetric eigenvalue server classes, which allow the computation of only the eigenvalues in a given range and (optionally) their corresponding eigenvectors.
rw/lapack/seigsrv.h
rw/lapack/heigsrv.h
Servers for the root-free QR method of computing eigenvalues. This method computes all the eigenvalues and no eigenvectors.
rw/lapack/seigsrv.h
rw/lapack/heigsrv.h
Symmetric eigenvalue server classes and the Hermitian eigenvalue server class, respectively, allow the computation of a subset of the eigenvalues and (optionally) their corresponding eigenvectors.
rw/lapack/seigsrv.hrw/lapack/heigsrv.h
A tridiagonal decomposition of a symmetric matrix A: A=Q’TQ where Q is orthogonal and T is tridiagonal and real.
rw/lapack/td.h