Algorithm
Basic set operation for sorted sequences.
#include <algorithm>
template <class InputIterator1, class InputIterator2, class OutputIterator> OutputIterator set_intersection (InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator last2, OutputIterator result); template <class InputIterator1, class InputIterator2, class OutputIterator, class Compare> OutputIterator set_intersection (InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result, Compare comp);
The set_intersection algorithm constructs a sorted intersection of elements from the two ranges. It returns the end of the constructed range. When it finds an element present in both ranges, set_intersection always copies the element from the first range into result. This means that the result of set_intersection is guaranteed to be stable. The result of set_intersection is undefined if the result range overlaps with either of the original ranges.
set_intersection assumes that the ranges are sorted using the default comparision operator less than (<), unless an alternative comparison operator (comp) is provided.
At most ((last1 - first1) + (last2 - first2)) * 2 -1 comparisons are performed.
// // set_intr.cpp // #include <algorithm> #include <set> #include <iostream.h> int main() { //Initialize some sets int a1[10] = {1,3,5,7,9,11}; int a3[4] = {3,5,7,8}; set<int, less<int> > odd(a1, a1+6), result, small(a3,a3+4); //Create an insert_iterator for result insert_iterator<set<int, less<int> > > res_ins(result, result.begin()); //Demonstrate set_intersection cout << "The result of:" << endl << "{"; copy(small.begin(),small.end(), ostream_iterator<int>(cout," ")); cout << "} intersection {"; copy(odd.begin(),odd.end(), ostream_iterator<int>(cout," ")); cout << "} =" << endl << "{"; set_intersection(small.begin(), small.end(), odd.begin(), odd.end(), res_ins); copy(result.begin(),result.end(), ostream_iterator<int>(cout," ")); cout << "}" << endl << endl; return 0; } Output : The result of: {3 5 7 8 } intersection {1 3 5 7 9 11 } = {3 5 7 }
If your compiler does not support default template parameters, then you need to always supply the Compare template argument and the Allocator template argument. For instance, you will need to write :
set<int, less<int> allocator>
instead of :
set<int>
includes, set, set_union, set_difference, set_symmetric_difference