Container
An associative container that supports unique keys. A set supports bidirectional iterators.
#include <set>
template <class Key, class Compare = less<Key>, class Allocator = allocator> class set ;
set<Key, Compare, Allocator> is an associative container that supports unique keys and provides for fast retrieval of the keys. A set contains at most one of any key value. The keys are sorted using Compare.
Since a set maintains a total order on its elements, you cannot alter the key values directly. Instead, you must insert new elements with an insert_iterator.
Any type used for the template parameter Key must provide the following (where T is the type, t is a value of T and u is a const value of T):
Copy constructors T(t) and T(u) Destructor t.~T() Address of &t and &u yielding T* and const T* respectively Assignment t = a where a is a (possibly const) value of T
The type used for the Compare template parameter must satisfy the requirements for binary functions.
template <class Key, class Compare = less<Key>, class Allocator = allocator> class set { public: // types typedef Key key_type; typedef Key value_type; typedef Compare key_compare; typedef Compare value_compare; typedef Allocator allocator_type; typename reference; typename const_reference; typename iterator; typename const_iterator; typename size_type; typename difference_type; typename reverse_iterator; typename const_reverse_iterator; // Construct/Copy/Destroy explicit set (const Compare& = Compare(), const Allocator& = Allocator ()); template <class InputIterator> set (InputIterator, InputIterator, const Compare& = Compare(), const Allocator& = Allocator ()); set (const set<Key, Compare, Allocator>&); ~set (); set<Key, Compare, Allocator>& operator= (const set <Key, Compare, Allocator>&); allocator_type get_allocator () const; // Iterators iterator begin (); const_iterator begin () const; iterator end (); const_iterator end () const; reverse_iterator rbegin (); const_reverse_iterator rbegin () const; reverse_iterator rend (); const_reverse_iterator rend () const; // Capacity bool empty () const; size_type size () const; size_type max_size () const; // Modifiers pair<iterator, bool> insert (const value_type&); iterator insert (iterator, const value_type&); template <class InputIterator> void insert (InputIterator, InputIterator); iterator erase (iterator); size_type erase (const key_type&); iterator erase (iterator, iterator); void swap (set<Key, Compare, Allocator>&); void clear (); // Observers key_compare key_comp () const; value_compare value_comp () const; // Set operations size_type count (const key_type&) const; pair<iterator, iterator> equal_range (const key_type&) const; iterator find (const key_type&) const; iterator lower_bound (const key_type&) const; iterator upper_bound (const key_type&) const }; // Non-member Operators template <class Key, class Compare, class Allocator> bool operator== (const set<Key, Compare, Allocator>&, const set<Key, Compare, Allocator>&); template <class Key, class Compare, class Allocator> bool operator< (const set<Key, Compare, Allocator>&, const set<Key, Compare, Allocator>&); // Specialized Algorithms template <class Key, class Compare, class Allocator> void swap (set <Key, Compare, Allocator>&, set <Key, Compare, Allocator>&);
explicit set (const Compare& comp = Compare(), const Allocator& alloc = Allocator ());
The default constructor. Creates a set of zero elements. If the function object comp is supplied, it is used to compare elements of the set. Otherwise, the default function object in the template argument is used. The template argument defaults to less (<). The allocator alloc is used for all storage management.
template <class InputIterator> set (InputIterator first, InputIterator last, const Compare& comp = Compare () const Allocator& alloc = Allocator());
Creates a set of length last - first, filled with all values obtained by dereferencing the InputIterators on the range [first, last). If the function object comp is supplied, it is used to compare elements of the set. Otherwise, the default function object in the template argument is used. The template argument defaults to less (<). Uses the allocator alloc for all storage management.
set (const set<Key, Compare, Allocator>& x);
Copy constructor. Creates a copy of x.
~set ();
The destructor. Releases any allocated memory for self.
set<Key, Compare, Allocator>& operator= (const set<Key, Compare, Allocator>& x);
Assignment operator. Self will share an implementation with x. Returns a reference to self.
allocator_type get_allocator () const;
Returns a copy of the allocator used by self for storage management.
iterator begin ();
Returns an iterator that points to the first element in self.
const_iterator begin () const;
Returns a const_iterator that points to the first element in self.
iterator end ();
Returns an iterator that points to the past-the-end value.
const_iterator end () const;
Returns a const_iterator that points to the past-the-end value.
reverse_iterator rbegin ();
Returns a reverse_iterator that points to the past-the-end value.
const_reverse_iterator rbegin () const;
Returns a const_reverse_iterator that points to the past-the-end value.
reverse_iterator rend ();
Returns a reverse_iterator that points to the first element.
const_reverse_iterator rend () const;
Returns a const_reverse_iterator that points to the first element.
void clear ();
Erases all elements from the set.
size_type count (const key_type& x) const;
Returns the number of elements equal to x. Since a set supports unique keys, count will always return 1 or 0.
bool empty () const;
Returns true if the size is zero.
pair<iterator, iterator> equal_range (const key_type& x) const;
Returns pair(lower_bound(x),upper_bound(x)). The equal_range function indicates the valid range for insertion of x into the set.
size_type erase (const key_type& x);
Deletes all the elements matching x. Returns the number of elements erased. Since a set supports unique keys, erase will always return 1 or 0.
iterator erase (iterator position);
Deletes the map element pointed to by the iterator position. Returns an iterator pointing to the element following the deleted element, or end() if the deleted item was the last one in this list.
iterator erase (iterator first, iterator last);
Deletes the elements in the range (first, last). Returns an iterator pointing to the element following the last deleted element, or end() if there were no elements after the deleted range.
iterator find (const key_value& x) const;
Returns an iterator that points to the element equal to x. If there is no such element, the iterator points to the past-the-end value.
pair<iterator, bool> insert (const value_type& x);
Inserts x into self according to the comparison function object. The template's default comparison function object is less (<). If the insertion succeeds, it returns a pair composed of the iterator position where the insertion took place, and true. Otherwise, the pair contains the end value, and false.
iterator insert (iterator position, const value_type& x);
x is inserted into the set. A position may be supplied as a hint regarding where to do the insertion. If the insertion may be done right after position then it takes amortized constant time. Otherwise it will take 0 (log N) time. The return value points to the inserted x.
template <class InputIterator> void insert(InputIterator first, InputIterator last);
Inserts copies of the elements in the range [first, last].
key_compare key_comp () const;
Returns the comparison function object for the set.
iterator lower_bound (const key_type& x) const;
Returns an iterator that points to the first element that is greater than or equal to x. If there is no such element, the iterator points to the past-the-end value.
size_type max_size () const;
Returns size of the largest possible set.
size_type size () const;
Returns the number of elements.
void swap (set<Key, Compare, Allocator>& x);
Exchanges self with x.
iterator upper_bound (const key_type& x) const
Returns an iterator that points to the first element that is greater than or equal to x. If there is no such element, the iterator points to the past-the-end value.
value_compare value_comp () const;
Returns the set's comparison object. This is identical to the function key_comp().
template <class Key, class Compare, class Allocator> bool operator== (const set<Key, Compare, Allocator>& x, const set<Key, Compare, Allocator>& y);
Equality operator. Returns true if x is the same as y.
template <class Key, class Compare, class Allocator> bool operator< (const set <Key, Compare, Allocator>& x, const set <Key, Compare, Allocator>& y);
Returns true if the elements contained in x are lexicographically less than the elements contained in y.
template <class Key, class Compare, class Allocator> void swap (set <Key, Compare, Allocator>& a, set <Key, Compare, Allocator>& b);
Efficiently swaps the contents of a and b.
// // set.cpp // #include <set> #include <iostream.h> typedef set<double, less<double>, allocator> set_type; ostream& operator<<(ostream& out, const set_type& s) { copy(s.begin(), s.end(), ostream_iterator<set_type::value_type>(cout," ")); return out; } int main(void) { // create a set of doubles set_type sd; int i; for(i = 0; i < 10; ++i) { // insert values sd.insert(i); } // print out the set cout << sd << endl << endl; // now let's erase half of the elements in the set int half = sd.size() >> 1; set_type::iterator sdi = sd.begin(); advance(sdi,half); sd.erase(sd.begin(),sdi); // print it out again cout << sd << endl << endl; // Make another set and an empty result set set_type sd2, sdResult; for (i = 1; i < 9; i++) sd2.insert(i+5); cout << sd2 << endl; // Try a couple of set algorithms set_union(sd.begin(),sd.end(),sd2.begin(),sd2.end(), inserter(sdResult,sdResult.begin())); cout << "Union:" << endl << sdResult << endl; sdResult.erase(sdResult.begin(),sdResult.end()); set_intersection(sd.begin(),sd.end(), sd2.begin(),sd2.end(), inserter(sdResult,sdResult.begin())); cout << "Intersection:" << endl << sdResult << endl; return 0; } Output : 0 1 2 3 4 5 6 7 8 9 5 6 7 8 9 6 7 8 9 10 11 12 13 Union: 5 6 7 8 9 10 11 12 13 Intersection: 6 7 8 9
Member function templates are used in all containers provided by the Standard Template Library. An example of this feature is the constructor for set <Key, Compare, Allocator> that takes two templated iterators:
template <class InputIterator> set (InputIterator, InputIterator, const Compare& = Compare(), const Allocator& = Allocator());
set also has an insert function of this type. These functions, when not restricted by compiler limitations, allow you to use any type of input iterator as arguments. For compilers that do not support this feature, we provide substitute functions that allow you to use an iterator obtained from the same type of container as the one you are constructing (or calling a member function on), or you can use a pointer to the type of element you have in the container.
For example, if your compiler does not support member function templates you can construct a set in the following two ways:
int intarray[10]; set<int, less<int>, allocator> first_set(intarray, intarray + 10); set<int, less<int>, allocator> second_set(first_set.begin(), first_set.end());
but not this way:
set<long, less<long>, allocator> long_set(first_set.begin(), first_set.end());
since the long_set and first_set are not the same type.
Also, many compilers do not support default template arguments. If your compiler is one of these you need to always supply the Compare template argument, and the Allocator template argument. For instance, you need to write :
set<int, less<int>, allocator>
instead of :
set<int>
allocator, Bidirectional Iterators, Containers, lexicographical_compare