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This white paper describes how to implement embedded analytics within a database using 
SourcePro and the JMSL Numerical Library, a native Java library from Rogue Wave Software. The 
benefits of using embedded analytics include:

•	 Real time analysis – reports results without data synchronization delay

•	 Faster results – eliminates the need to move the data across the network 

•	 Accuracy – co-locates the data and the analytics to avoid potential user errors

•	 Accessibility – allows invoking the data and analytics from any programming language or 
application that can connect to the database

•	 Better quality of data – allows preprocessing and cleaning of data before it’s stored 

•	 Higher security – data used as input to the analytics never leaves the database and, if 
necessary, user access is limited to running the stored routines without access to the 
underlying data

Using embedded JMSL offers:

•	 Trusted technology – JMSL is a known and proven product, built on over 40 years of 
experience

•	 Minimal risk – JMSL works with many existing databases as is, so there is no change of 
platform required 

We describe in detail how to implement embedded JMSL using a particular relational database 
management system (RDBMS). We then query the embedded JMSL in RDMBS using SourcePro DB. 



3ROGUEWAVE.COM

OVERVIEW 
While variety is one of the characteristics of big data, it is also a characteristic of how one responds to the challenges to 
big data. That is, the overall strategy when working with big data needs to be composed of specific tactics and tools for 
specific challenges. Use of Hadoop and the MapReduce framework is one such tactic1. Hadoop is ideal for storing and 
processing very large data sets stored on computer clusters built from inexpensive hardware. But it is not a solution 
to all the challenges23. Hadoop’s MapReduce embodies one of the fundamental changes when working with big data. 
Previously, for advanced analysis and processing, data moved from the database to a client machine and results were 
uploaded back to the database. Now the paradigm is to join the algorithms with the data. The work described in this 
white paper brings the JMSL algorithms to the data and orchestrates the processing of the data using SourcePro DB.  

The JMSL Numerical Library is a pure Java numerical library, providing a broad range of advanced mathematics, statistics, 
and charting for the Java environment. It extends core Java numerics and allows developers to seamlessly integrate 
advanced analytics into their Java applications. For data mining and predictive analytics applications, JMSL provides 
algorithms supporting all stages of the data analytical process, including processing and cleaning, exploring and 
visualizing, data mining, building models, predicting, optimizing, validating, and monitoring. Example algorithms include 
Naive Bayes, Apriori, K-means clustering, Decision Trees, Neural Nets, Maximum Likelihood Estimation (MLE), Time Series 
Forecasting with ARMA, Holt-Winters, AutoARIMA, and many others.

SourcePro is a complete enterprise C++ development platform. It provides fundamental C++ components as well as 
robust, reliable cross-platform C++ tools in the areas of analysis, networking, and databases. SourcePro DB, a part of the 
SourcePro product suite, is a library of C++ classes that provide a high-level, object-oriented, cross-database abstraction 
over the native C APIs of various database vendors. It provides a high-performance, consistent API encapsulating the 
database-specific differences in behavior and syntax.  
 

EMBEDDING JMSL
Relational databases have long had the ability to store and call routines in the native SQL. These routines are usually 
referred to as stored procedures. In addition, many RDBMSs now implement a JVM within the database. Java, in turn, 
implements datatypes that are one-to-one mappings of fundamental SQL datatypes. This allows seamless embedding 
of Java routines. These routines run in the database and eliminate the unnecessary movement of data. Finally, besides 
single Java classes, one can load Java archives (jar files) directly into the database, allowing any user with sufficient 
privileges to write Java stored procedures that use classes in the archive. 

To demonstrate how to embed JMSL, we describe an explicit case using an Oracle 12c database. To demonstrate an 
example of embedded predictive analytics, we show a complete implementation of the Naïve Bayes classifier algorithm, 
and create tables in a database containing Fisher iris data (a common data set containing samples for three species of 
the iris flower)  to use as a test case. We then use SourcePro DB to create and execute stored procedures that invoke 
the embedded Naïve Bayes implementation. The complete Java code is in the appendix. 

1  “Using JMSL in Hadoop MapReduce applications,” Rogue Wave Software, 2015.	
2  “F1: A Distributed SQL Database that Scales,” Research at Google, accessed May 2016.	
3  “Hadoop is not enough for big data,” InfoWorld, October 2013.	

http://www.roguewave.com/resources/white-papers/using-jmsl-in-hadoop-mapreduce-applications
http://research.google.com/pubs/pub41344.html
http://www.infoworld.com/article/2612632/hadoop/hadoop-is-not-enough-for-big-data--says-facebook-analytics-chief.html
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Loading JMSL
The first step is to load the JMSL library into the database. Oracle has a command-line utility called loadjava for adding 
Java source files, classes, and libraries (jar files) to the database.

> loadjava −u sys@ORCL −resolve jmsl.jar

Here, the −u flag specifies the user and database, and the −resolve flag checks for any dependencies of the loaded 
object.

Implementation of a JMSL stored procedure
In general, when implementing Java stored procedures on an Oracle database there are three steps:

1.	 Write the Java class.

2.	 Load the class into the database with loadjava.

3.	 Publish the Java class. 

Write the Java class
The Naïve Bayes classifier example has two primary input parameters (four altogether). The first is the training set that 
contains data categorized into known classes. The second is a data set of unknown type that needs classification. For 
now, we show just the entry point method to our class: 

public static int Classify ( ResultSet rsT, ResultSet rsC,                              
ResultSet rsRows, ResultSet rsClasses )

Classify returns the previously unknown data’s class as an integer. The input parameters are all of type 
java.SQL.ResultSet. This datatype maps directly to the SQL CURSOR variable type, SYS_REFCURSOR. The inputs are, in 
order: the training data, the unknown data, the size of the training set, and the number of possible types. This method is 
part of the RWNaiveBayes.java class that has a complete listing in the appendix.

Load the class
We use the same command-line utility used for loading the JMSL library:

> loadjava −verbose −u sys@ORCL −resolve RWNaiveBayes.class

We are loading the compiled class rather than the source because our experience tells us that loading source files and 
compiling them in the database can add complications. In addition to checking for dependencies with the −resolve 
flag, we use verbose output to get full information on the upload. 

Publish the class methods
For each Java method that’s called from SQL, you must write a call specification to expose the top-level entry point of the 
method to Oracle.  We will use SourcePro DB to publish the class methods in Oracle and execute them. 
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First, let’s connect to the Oracle database. To establish a database connection, we first request an RWDBDatabase 
instance from the RWDBManager and then instantiate an RWDBConnection object from the database instance.

   RWDBDatabase db = RWDBManager::database(“ORACLE_OCI”, “<SERVER NAME>”, “<USER>”, 
“<PASSWORD>”, “”);
    RWDBConnection conn = db.connection();
    if(conn.isValid()) {
        std::cout << “Connected!” << std::endl;
    }
    else {
        std::cout << conn.status().message() << std::endl;
    }

Now, we create a stored function, RWNaiveBayes, which invokes the JMSL routine with passed in parameters.

RWCString rwNaiveBayesText(“CREATE or REPLACE FUNCTION RWNaiveBayes( \
                            curs_train IN SYS_REFCURSOR, \
                            curs_class IN SYS_REFCURSOR, \
                            curs_numrows IN SYS_REFCURSOR, \
                            curs_numclass IN SYS_REFCURSOR) \
                            RETURN NUMBER \
                            AS LANGUAGE JAVA \
                            NAME ‘RWNaiveBayes.Classify( \
                            java.sql.ResultSet, \
                            java.sql.ResultSet, \
                            java.sql.ResultSet, \
                            java.sql.ResultSet ) return int’;”);
if (!conn.executeSql(rwNaiveBayesText).isValid()) {
    std::cout << “Failed to create rwNaiveBayesText stored function”;
    return 0;
}

 
Next, we create a stored procedure, Invoke_RWNaiveBayes, that passes values from the tables iris_trn and  
faux_iris to the RWNaiveBayes stored function.

RWCString stprocText(“create or replace procedure Invoke_RWNaiveBayes ( \
                        val out INTEGER) \
                        IS \
                        BEGIN \
                        SELECT CT into val FROM (SELECT RWNaiveBayes( 
                        CURSOR(SELECT classification, sepallength, 
                          sepalwidth, petallength, petalwidth FROM iris_trn ), \
                        CURSOR( SELECT * FROM faux_iris OFFSET 8 ROWS 
                          FETCH FIRST 1 ROWS ONLY), \
                        CURSOR( SELECT COUNT(*) FROM iris_trn ), \
                        CURSOR( SELECT MAX(classification) FROM iris_trn )) \
                       AS CT FROM dual); \
                       END;”);
 if (!conn.executeSql(stprocText).isValid()) {
	     std::cout << “Failed to create stored procedure”;
      return 0;
 }
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For demonstration purposes, we have used a single query to classify unknown data and return its type. In practice, one 
would most likely use stored views rather than the subqueries as in this example.

The subquery in line six selects values from the Fisher iris data that has been stored in the table iris_trn. The four 
selected parameters from the training set are the defining characteristics of the iris data. Line seven selects the eighth 
row from the table of iris test data stored in faux_iris. Lines eight and nine select the number of rows and the 
number of classes from the table iris_trn. 

There are three levels of SELECT being used. The first level gets the classification type from the alias CT. The second level 
is the function call, SELECT RWNaiveBayes. The third level selects information from the database to pass to the Bayes 
classifier. Lines six through nine are the four inputs to the Bayes classifier. Typically, when passing queries to any stored 
procedure, they’re in the form of CURSOR expressions5. This is the reason for the syntax: CURSOR( SELECT …). 

Our point with this example is to show an embedded analytics call solely using basic SQL syntax. It is quite general and 
can be used with training data that has very many or very few parameters (columns), as long as they are a numeric type. 
The limit on the size of the training set (rows) is essentially the amount of memory available. Many other algorithms in 
the JMSL library can be implemented in the same manner. 

Finally, we invoke the stored procedure we just created and retrieve the output value.

int output = 0;
RWDBStoredProc stproc = db.storedProc(“Invoke_RWNaiveBayes”, conn);
stproc << &output;
if (stproc.execute(conn).isValid()) {
    std::cout << “Output Classification Value is: “ << output << std::endl;
}

SUMMARY
In this white paper, we have shown explicit steps to embed JMSL in a database to implement a particular algorithm. The 
Naïve Bayes classifier is just one of many algorithms available in the JMSL library. Using embedded JMSL doesn’t require 
a platform change, so it will work with many existing RDBMS systems. SourcePro DB, with its intuitive API, makes it easy 
to connect to RDBMS systems and query JMSL algorithms. There is essentially no risk and the only startup cost is writing 
simple wrapper code to the robust and proven JMSL algorithms. Eliminating the data transfer to separate analysis 
machines offers increased security and huge throughput improvements. It also removes the possibility of corruption of 
data due to movements from and to the database.
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APPENDIX
In this appendix, we show the structure of tables used and full implementation of the Java class used in the classifier 
example. For further information on the algorithm, see the NaiveBayesClassifier entry in the JMSL documentation. We 
first show the class overview and required imports, and then show the code for the three class methods.

Table iris_trn
ID              INT           # ID, used to identify the training pattern
SEPALLENGTH     DECIMAL(5,1)  # sepal length
SEPALWIDTH      DECIMAL(5,1)  # sepal width
PETALLENGTH     DECIMAL(5,1)  # petal length
PETALWIDTH      DECIMAL(5,1)  # petal width
SPECIESOFIRIS   VARCHAR(20)   # name of Iris species
CLASSIFICATION  INT           # Iris species classification

Table faux_iris
SEPALLENGTH     DECIMAL(5,1)  # sepal length
SEPALWIDTH      DECIMAL(5,1)  # sepal width
PETALLENGTH     DECIMAL(5,1)  # petal length
PETALWIDTH      DECIMAL(5,1)  # petal width

The class overview
import java.sql.ResultSet; import 
java.sql.ResultSetMetaData; import 
java.sql.SQLException; import 
com.imsl.datamining.*;
import com.imsl.stat.NormalDistribution; public 

class RWNaiveBayes {

 // entry point
 public static int Classify ( ResultSet rsT, ResultSet rsC, 
                                    ResultSet rsRows, ResultSet rsClasses )                                   
throws SQLException { … }

      // function over-ride of the entry point method  public static int 
Classify ( ResultSet rsT, ResultSet rsC,                        int nrows, int nClasses )
throws SQLException { … }

 // train
 public static NaiveBayesClassifier Train(ResultSet rs, int nrows,
                                       int nClasses) throws SQLException { … }
} 

http://docs.roguewave.com/imsl/java/7.1/manual/api/index.html
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Entry point
public static int Classify ( ResultSet rsT, ResultSet rsC, 
                             ResultSet rsRows, ResultSet rsClasses )                        
throws SQLException {
 int nclass = -1;
 try {    	
	 rsRows.next();
  		  int nrows = rsRows.getInt(1);
  	  
  	     rsClasses.next();
  		  int nClasses = rsClasses.getInt(1);
  	  
  		  nclass = Classify( rsT, rsC, nrows, nClasses);

 } catch (SQLException e) {   	
	 System.err.println(e);   	
	 e.printStackTrace();   	throw(e);
 } 
 return nclass;
} 

Override of the entry point  
public static int Classify ( ResultSet rsT, ResultSet rsC,                              
int nrows, int nClasses )throws SQLException {  int nclass = -1;

 ResultSetMetaData rsmd = null; 
 try {  
  	 NaiveBayesClassifier nbTrainer = Train( rsT, nrows, nClasses);   	 rsmd =  
rsC.getMetaData();

  		  int nContinuous = rsmd.getColumnCount();
  	  
  		  double[] continuousInput  = new double[nContinuous]; 
  	  
  	     rsC.next();
  	
	 for (int jj=0; jj<nContinuous; jj++)   	  	
continuousInput[jj]=rsC.getDouble(jj+1);     	 double[] 
classifiedProbabilities = new double[nClasses]; 

     	    classifiedProbabilities =
  	  	  	 nbTrainer.probabilities(continuousInput, null);
  	  
  		  nclass = nbTrainer.predictClass(continuousInput, null) + 1;
  	  
 } catch (SQLException e) {   	
	 System.err.println(e);   	
	 e.printStackTrace();   	throw(e);
 } 
 return nclass;
} 
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The trainer
public static NaiveBayesClassifier Train(ResultSet rs,                            
int nrows, int nClasses) throws SQLException {
 
 NaiveBayesClassifier nbTrainer = null;
 
 ResultSetMetaData rsmd = null;  try {
  	 rsmd = rs.getMetaData();   	 int 

ncolumns = rsmd.getColumnCount();

  		  int nContinuous = ncolumns-1;
  	   	   int nNominal     =0;   /* no nominal input attributes      */
 
  		  int[] classification = new int [nrows];
  	   	   double[][] continuousData = new double[nrows][nContinuous];
  	
		  int ii=0;
  	
	 while( rs.next() ) {   	 	  
	 // get the class type
  			   classification[ii] = rs.getInt(1)-1;
  	  		  // get the attributes
  	  	 for (int jj=0; jj<nContinuous; jj++)   	  	  	
	 continuousData[ii][jj] = rs.getDouble(jj+2);
  	
		   	 ii++;
  	 }
  	
		  nbTrainer = new NaiveBayesClassifier(nContinuous, nNominal, nClasses);    
  	
	 for (int i=0; i<nContinuous; i++)   	  	
	 nbTrainer.createContinuousAttribute(new NormalDistribution());

	   	 // train the classifier
  		  nbTrainer.train(continuousData, classification ); 
 } catch (SQLException e) {   	
	 System.err.println(e);   	
	 e.printStackTrace();   	throw(e);
 } 
 return nbTrainer;
}
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