
USING IMSL C ON RELATIONAL
DATA WITH SOURCEPRO DB

2ROGUEWAVE.COM

OVERVIEW
SourcePro DB supports a wide variety of databases and can be used to retrieve, manipulate, and analyze data, including
very large data, using the statistical analysis functions provided by the IMSL C Numerical Library.

This paper provides a code example that uses SourcePro DB to harvest data from a database, analyzes that data using
IMSL C, and then updates the database with the processed data.

Introduction to IMSL C Numerical Library
The IMSL C Numerical Library provides advanced mathematical and statistical functionality for embedding into existing
or new applications. The IMSL C stat library, a component of the IMSL C Numerical Libraries, is composed of C functions
useful in scientific programming. It supports numerous statistical functions in areas such as basic statistics, regression,
correlation and covariance, analysis of variance, categorical and discrete data analysis, nonparametric statistics, tests of
goodness of fit, time series and forecasting, multivariate analysis, survival and reliability analysis, probability distribution
and inverses, random number generation, and data mining, among others.

Introduction to SourcePro DB
SourcePro is a complete enterprise C++ development platform that provides robust, reliable, cross-platform C++
tools in areas of analysis, networking, and DB, in addition to fundamental C++ components. SourcePro DB, a part of
SourcePro product suite, is a library of C++ classes featuring a high-level object-oriented cross-database abstraction
over database vendors’ native C APIs. It provides a high-performance, consistent API encapsulating database-specific
differences in behavior and syntax. SourcePro DB has six database-specific access modules enabling connectivity to
Oracle, Sybase ASE, DB2, SQL Server, MySQL, and PostgreSQL databases. It also has a generic ODBC Access Module
allowing connectivity to any database that has an ODBC 3.x driver. Combining all the access modules, users can write
performance-intensive applications interfacing with a variety of databases using a single consistent API.

USING IMSL C ON RELATIONAL DATA
WITH SOURCEPRO DB
IMSL C Library provides a rich set of statistical computational functions that can analyze large sets of data. For the
common case of large data stored in a database, we can use IMSL C along with SourcePro DB to easily harvest the data,
analyze it using IMSL C, and even update the database with the processed data.

The example here invokes Naïve Bayes Trainer on Fisher’s Iris data set fetched from a database using the SourcePro DB
API. It invokes the IMSL C Naïve Bayes Trainer function on the fetched data, reports the Iris classification error rates, and
then updates the database with the Iris classifications.

3ROGUEWAVE.COM

This example assumes that the database stores the data set in the table irisData with the following table structure.
The column classification is updated by the example to store the Iris classification.

ID INT # ID, used to identify the training pattern
SEPALLENGTH DECIMAL(5,1) # sepal length
SEPALWIDTH DECIMAL(5,1) # sepal width
PETALLENGTH DECIMAL(5,1) # petal length
PETALWIDTH DECIMAL(5,1) # petal width
SPECIESOFIRIS VARCHAR(20) # name of Iris species
CLASSIFICATION INT # Iris species classification

To start off, the example defines some constants for the number of continuous input attributes and classification
categories. As we are using the Iris flower data set, we have four continuous attributes in each training pattern – sepal
length, sepal width, petal length, and petal width and we have three classification categories – setosa, versicolor, and
virginica.

const size_t nContinuous = 4;
const size_t nClasses = 3;

RWTValOrderedVector<int> classification;
RWTValOrderedVector<float> continuous;

Imsls_f_nb_classifier *nbClassifier; // Classification to train.
imsls_omp_options(IMSLS_SET_FUNCTIONS_THREAD_SAFE, 1, 0);

Objects of class RWTValOrderedVector are used to store the continuous data and the classification data fetched from
the database. This SourcePro Essential Tools Module class (another module in the SourcePro C++ product) stores the
data as a vector which allows us to access it as an array when passing it to the IMSL C function. This class also provides
the advantage of dynamically increasing the vector size, thus affording us the flexibility of not having to know the number
of training patterns in the database beforehand.

RWDBDatabase db = RWDBManager::database(“<access library>”,
 “<database server>”, “<user>”, “<password>”, “<database name>”);
RWDBTable tab = db.table(“irisData”);

The code snippet above creates the SourcePro DB database objects needed to fetch and update data in the
database. An RWDBDatabase object is produced by passing in database connection parameters to monostate class
RWDBManager. The first parameter, access library, specifies which SourcePro DB Access Module use, allowing the
application to fetch data from a wide selection of databases or a combination of databases using the cross-database
SourcePro DB API. The rest of the arguments provide database connection information depending on the access module
used. The RWDBDatabase object is then used to produce an RWDBTable object that represents the database table
storing the Iris data set. These database objects are used in methods getData()and updateData()to produce DML
objects that perform the actual data manipulation.

4ROGUEWAVE.COM

 getData(tab, classification, continuous);

 // Data corrections described in the KDD data mining archive
 continuous[4 * 34 + 3] = 0.1;
 continuous[4 * 37 + 1] = 3.1;
 continuous[4 * 37 + 2] = 1.5;

 updateData(tab, classification);

The getData()method, described in more detail below, is called to fetch the Iris data set into the
RWTValOrderedVector objects. Data corrections are applied per the KDD data mining archive. getData()
populates the classification vector based on the species of Iris flowers in the data set. These values are then stored
in the CLASSIFICATION column of the database table by the updateData()method, also described in more detail
below.

 int* classErrors =
 imsls_f_naive_bayes_trainer(classification.entries(),
 nClasses, classification.data(),
 IMSLS_CONTINUOUS, nContinuous, continuous.data(),
 IMSLS_NB_CLASSIFIER, &nbClassifier, 0);

 // Process Iris classification error rates

 imsls_free(classErrors);

The IMSL C Naïve Bayes Trainer is now called, passing the classification and continuous arrays from the respective
vectors. It trains the classifier nbClassifier on the Iris data set.

Let’s consider the getData() and updateData() methods that perform the actual database manipulation. The
getData()method accepts the RWDBTable object that represents the database table storing the Iris data set. It also
accepts the classification and continuous vector objects by reference. The fetched data will be stored in these
vectors.

void getData(const RWDBTable& tbl,
 RWTValOrderedVector<int>& classification,
 RWTValOrderedVector<float>& continuous)
{
 RWDBSelector selector = tbl.database().selector();
 selector << tbl[“sepalLength”] << tbl[“sepalWidth”]
 << tbl[“petalLength”] << tbl[“petalWidth”]
 << tbl[“speciesOfIris”];
 selector.orderBy(tbl[“id”]);
 RWDBReader rdr = selector.reader();

SourcePro DB uses DML classes, such as RWDBSelector and RWDBReader above, for SQL generation and result
processing. It abstracts away the database-specific syntax and API, and provides a high-level object-oriented API making
the code portable across databases.

5ROGUEWAVE.COM

The above code produces an RWDBSelector from the same RWDBDatabase instance that produced the RWDBTable
object. The columns that need to be fetched are shifted in the RWDBSelector. The order of rows fetched is defined
by the ID column of the table. The RWDBSelector is then executed and an RWDBReader is produced by calling the
reader() method.

 double sepalLength, sepalWidth, petalLength, petalWidth;
 RWCString speciesOfIris;
 int i=0;

 while(rdr()) {
 rdr >> sepalLength >> sepalWidth
 >> petalLength >> petalWidth >> speciesOfIris;
 if (speciesOfIris == “setosa”) {
 classification.append(0);
 }
 else if (speciesOfIris == “versicolor”) {
 classification.append(1);
 }
 else if (speciesOfIris == “virginica”) {
 classification.append(2);
 }
 else {
 assert(“NO MATCH”);
 }
 continuous.append(sepalLength);
 continuous.append(sepalWidth);
 continuous.append(petalLength);
 continuous.append(petalWidth);
 }
}

The RWDBReader then fetches the data set values in the order in which the columns were selected in the
RWDBSelector. The sepal length, sepal width, petal length, and petal width are appended to the continuous vector
that forms the continuous array input to the Naïve Bayes Trainer. The Iris flower species is used to determine the
classification of the Iris flower and is appended to the classification vector that forms the classification array input to
the Naïve Bayes Trainer.

The updateData()method stores the Iris flower classification to the CLASSIFICATION column of the database table.
Similarly to the getData()method, it accepts the RWDBTable object that represents the table to be updated with the
Iris classification data stored in the classification vector.

6ROGUEWAVE.COM

void updateData(const RWDBTable& tbl, const RWTValOrderedVector<int>& classification)
{
 int classVal, idVal;

 RWDBUpdater updater = tbl.updater();
 updater << tbl[“classification”].assign(RWDBBoundExpr(&classVal));
 updater.where(tbl[“id”] == RWDBBoundExpr(&idVal));

 for (int i = 0; i < classification.entries(); ++i) {
 classVal = classification(i);
 idVal = i + 1;
 updater.execute();
 }
}

This method uses another SourcePro DB DML class, RWDBUpdater, to update the database table. An instance of
RWDBUpdater is produced from the RWDBTable object and is used to update the CLASSIFICATION column of
each row by identifying each row using its ID column. As there are a number of rows to be updated, placeholders
are used for binding the classification and id values using RWDBBoundExpr class. classVal is bound as a variable
storing the classification, and idVal as a variable storing the id field of the row to be updated. For each value in the
classification vector, the classVal and idVal variables are updated to the correct values and the RWDBUpdater
is executed.

Rogue Wave provides software development tools for mission-critical applications. Our trusted solutions address the growing complexity of building
great software and accelerates the value gained from code across the enterprise. The Rogue Wave portfolio of complementary, cross-platform tools
helps developers quickly build applications for strategic software initiatives. With Rogue Wave, customers improve software quality and ensure code
integrity, while shortening development cycle times.

© 2016 Rogue Wave Software, Inc. All rights reserved.

