
USING SOURCEPRO DB WITH
MICROSOFT AZURE SQL DATABASE

2ROGUEWAVE.COM

SourcePro DB was created long before cloud computing. So it may be a surprise to some that it that SourcePro DB can
simplify your use of the Microsoft Azure SQL Database.

SourcePro is a complete enterprise C++ development platform that provides robust, reliable cross-platform C++ tools in
areas of databases, networking, analysis, and fundamental C++ components. SourcePro DB, a part of SourcePro product
suite, is a library of C++ classes featuring a high-level object-oriented cross-database abstraction over the database
vendor native C APIs. It provides a high performance, consistent API encapsulating database-specific differences in
behavior and syntax. The DB Access Module for Microsoft SQL server provides access to Microsoft SQL server using
ODBC drivers.

In this paper, we will describe using SourcePro DB while connecting to a Microsoft Azure SQL database. We will cover
some minor limitations observed as compared to a locally installed SQL Server.

INTRODUCTION TO MICROSOFT AZURE
SQL DATABASE
Microsoft Azure SQL Database is a relational database-as-a-service offering on Microsoft Azure cloud. Azure SQL
Database is built on standardized hardware and software that is owned, hosted, and maintained by Microsoft. With
Azure SQL Database, you can develop directly on the service using built-in features and functionality.1

With the ability to use ODBC drivers such as the SQL Server Native Client ODBC driver and the ODBC Driver for SQL
Server, SourcePro DB applications can connect and work with Azure SQL Databases, just as they would with a locally
installed SQL server instance. This enables existing applications written for in-house SQL server installations to be
migrated to use Azure SQL Databases with few or no changes and provides all of the advantages that Azure SQL
Databases offer, such as hardware and software maintenance and administration, high availability, disaster recovery,
point-in-time restore, geo-restore, and geo-replication, to name a few.1

USING SOURCEPRO DB
WITH AZURE SQL DATABASE
Setup
Azure SQL Database can be set up in Microsoft Azure Portal
(https://portal.azure.com/) by creating a new SQL database
under the category of Data + Storage. Besides providing
database-specific settings, such as database name, database
source, pricing tier, and collation, you will need to configure the
Azure SQL Server in which the database will reside. An existing
Azure SQL Server can be selected if it is version V12, or a new
server can be created.

1 “Understanding Azure SQL Database and SQL Server in Azure VMs”, assessed June 2016.

Azure cloud

In-house

Azure SQL Databases
SourcePro

DB
application

Cloud VM

SourcePro DB
application

Local machine

https://portal.azure.com/
https://azure.microsoft.com/en-us/documentation/articles/data-management-azure-sql-database-and-sql-server-iaas/

3ROGUEWAVE.COM

To create a new server, you will need to provide the server name, admin credentials, and the physical location.2

In the question of whether to create a V12 server, select YES. The V12 version has significant advantages over the earlier
V11 version, including increased compatibility with SQL Server 2014, higher performance, support for elastic database
pools, and security enhancements, amongst others.3 V11 version did not support tables without clustered indexes,
which is a major limitation in functionality as compared to standalone SQL servers.

Configuration
Once the Azure SQL Database is set up, you need to ensure that your choice of SQL server ODBC driver on the client
machine is able to connect to the Azure SQL Database.

•	 In order for the Azure SQL Server to accept a connection request coming from the IP address of the client
machine, the client IP address needs to be added to its firewall settings. In the Microsoft Azure Portal, select
the Azure SQL Server used to host the Azure SQL Database. Select the firewall settings and add a rule for
accepting connections from the client IP address. Alternatively, you can select a range of IP addresses to accept
connections from.2

•	 ODBC DSN setup on the client machine is same as it would be for a locally installed SQL server. The name of the
host is the name of the Azure SQL Server and the name of the database is the name of the Azure SQL Database.
At the end of the ODBC DSN setup, there is an option to test the database connection.

Once a successful connection has been established, the new ODBC DSN can be supplied as the server name parameter
to the SourcePro DB API RWDBManager::database(), while using the DB access module for Microsoft SQL Server.
Here is an example:

RWDBDatabase db = RWDBManager::database(“MS_SQL”, “<ODBC DSN name>”,

 “<user name>”, “<password>”, “<Azure SQL Database Name>”);

The RWDBDatabase object can then be used in the same way as you would a local SQL server instance.

Limitations
An Azure SQL Database is not able to access other databases on the same Azure SQL Server. For this reason,
any attempt to access objects on another database is not supported, and object references such as <database
name>.<schema name>.<object name> are not supported. For the same reason, global temporary objects are not
supported, as they are created in a temporary database. These operations result in following errors:

[Microsoft][ODBC SQL Server Driver][SQL Server]Reference to database and/or server
name in ‘<database name>.<schema name>.<object name>’ is not supported in this version
of SQL Server.

[Microsoft][ODBC SQL Server Driver][SQL Server]Global temp objects are not supported

in this version of SQL Server.

2 “SQL Database tutorial: Create a SQL database in minutes using the Azure portal”, assessed June 2016.
3 “What’s new in SQL Database V12”, assessed June 2016.

http://www.forbes.com/sites/mikekavis/2014/12/18/11-common-devops-bottlenecks/#59be18d814e1
https://azure.microsoft.com/en-us/documentation/articles/sql-database-get-started/
https://azure.microsoft.com/en-us/documentation/articles/sql-database-get-started/
https://azure.microsoft.com/en-us/documentation/articles/sql-database-v12-whats-new/

4ROGUEWAVE.COM

Summary
Using DB Access Module for Microsoft SQL Server, new SourcePro DB applications can be written connecting to the
Azure SQL Databases hosted in Azure cloud with the same easy-to-use, object-oriented, high-performance API. Existing
applications connecting to local SQL Server instances can easily be migrated to connect to Azure SQL Databases with
little or no change to the code, while taking advantage of all the features that cloud hosted databases offer.

USING THE ELASTIC DATABASE FEATURE
After configuring the Azure SQL database, we now look at the basic setup for elastic database feature. There are no
changes required to SourcePro DB application in order to connect to an SQL Azure database with elastic feature enabled.

Setup elastic database server
Create a SQL database on Azure portal by following the instructions here:
https://azure.microsoft.com/en-us/documentation/articles/sql-database-get-started/

Note: Please ensure that the IP address of your machine is in the list of allowed IP addresses.

Setup shards

Setup shards by following instructions here:
https://azure.microsoft.com/en-us/documentation/articles/sql-database-elastic-scale-get-started/#Getting-started-
with-elastic-database-tools

The sample application in the article sets up shards and also loads it with sample tables. We will use this sample in
for our next step. So, execute step 3, a few times so that data is inserted in the shards.

Setup tables on the Azure database server
Open SQL server management studio (or command line via sqlcmd) and connect to your elastic database server. Run
the attached script to create a database, configure an external data source and setup external tables. The tables on this
server provide the interface to execute queries on the shard.

Test the shards
Query the ‘Customers’ table using SourcePro DB

RWDBTable customerTable = myDbase.table(“Customers”);

RWDBConnection connection = myDbase.connection();

RWDBSelector select = myDbase.selector();

select << customerTable[“CustomerId”];

RWDBReader rdr = select.reader(connection);

int customerId;

while(rdr()) {

	 rdr >> customerId;

}

https://azure.microsoft.com/en-us/documentation/articles/sql-database-get-started/
https://azure.microsoft.com/en-us/documentation/articles/sql-database-elastic-scale-get-started/#Getting-started-with-elastic-database-tools
https://azure.microsoft.com/en-us/documentation/articles/sql-database-elastic-scale-get-started/#Getting-started-with-elastic-database-tools

5ROGUEWAVE.COM

Example for external tables
This sections includes script to setup external tables.

CREATE MASTER KEY ENCRYPTION BY PASSWORD = ‘pwd’;

CREATE DATABASE SCOPED CREDENTIAL SMMCred
WITH IDENTITY = ‘user’,
SECRET = ‘pwd’;

CREATE EXTERNAL DATA SOURCE ElasticDataSource WITH
 (TYPE = SHARD_MAP_MANAGER,
 LOCATION = ‘server name’,
 DATABASE_NAME = ‘ElasticScaleStarterKit_ShardMapManagerDb’,
 CREDENTIAL = SMMCred,
 SHARD_MAP_NAME = ‘CustomerIDShardMap’);

CREATE EXTERNAL TABLE [Regions] (
 [RegionId] [int] NOT NULL,
 [Name] [nvarchar](256) NOT NULL
)
WITH
(
 DATA_SOURCE = ElasticDataSource,
 DISTRIBUTION = REPLICATED
);

CREATE EXTERNAL TABLE [Products] (
 [ProductId] [int] NOT NULL,
 [Name] [nvarchar](256) NOT NULL
)
WITH
(
 DATA_SOURCE = ElasticDataSource,
 DISTRIBUTION = REPLICATED
);

CREATE EXTERNAL TABLE [Customers] (
 [CustomerId] [int] NOT NULL,
 [Name] [nvarchar](256) NOT NULL,
 [RegionId] [int] NOT NULL
)
WITH
(
 DATA_SOURCE = ElasticDataSource,
 DISTRIBUTION = SHARDED(CustomerId)
);

Rogue Wave provides software development tools for mission-critical applications. Our trusted solutions address the growing complexity of building
great software and accelerates the value gained from code across the enterprise. The Rogue Wave portfolio of complementary, cross-platform tools
helps developers quickly build applications for strategic software initiatives. With Rogue Wave, customers improve software quality and ensure code
integrity, while shortening development cycle times.

© 2016 Rogue Wave Software, Inc. All rights reserved.

CREATE EXTERNAL TABLE [Orders](
 [CustomerId] [int] NOT NULL,
 [OrderId] [int] NOT NULL,
 [OrderDate] [datetime] NOT NULL,
 [ProductId] [int] NOT NULL
)
WITH
(
 DATA_SOURCE = ElasticDataSource,
 DISTRIBUTION = SHARDED(CustomerId)
);

