Function Object
Templatized utilities to bind values to function objects
#include <functional>
template <class Operation> class binder1st : public unary_function<typename Operation::second_argument_type, typename Operation::result_type> ; template <class Operation, class T> binder1st<Operation> bind1st (const Operation&, const T&); template <class Operation> class binder2nd : public unary_function<typename Operation::first_argument_type, typename Operation::result_type> ; template <class Operation, class T> binder2nd<Operation> bind2nd (const Operation&, const T&);
Because so many functions provided by the standard library take other functions as arguments, the library includes classes that let you build new function objects out of old ones. Both bind1st() and bind2nd() are functions that take as arguments a binary function object f and a value x, and return, respectively, classes binder1st and binder2nd. The underlying function object must be a subclass of binary_function.
Class binder1st binds the value to the first argument of the binary function, and binder2nd does the same thing for the second argument of the function. The resulting classes can be used in place of a unary predicate in other function calls.
For example, you could use the count_if algorithm to count all elements in a vector that are less than or equal to 7, using the following:
count_if (v.begin, v.end, bind1st(greater<int> (),7), littleNums)
This function adds one to littleNums each time the predicate is true, i.e., each time 7 is greater than the element.
// Class binder1st
template <class Operation> class binder1st : public unary_function<typename Operation::second_argument_type, typename Operation::result_type> { public: typedef typename unary_function<typename Operation::second_argument_type, typename Operation::result_type>::argument_type argument_type; typedef typename unary_function<typename Operation::second_argument_type, typename Operation::result_type>::result_type result_type; binder1st(const Operation&, const typename Operation::first_argument_type&); result_type operator() (const argument_type&) const; }; // Class binder2nd template <class Operation> class binder2nd : public unary_function<typename Operation::first_argument_type, typename Operation::result_type> { public: typedef typename unary_function<typename Operation::first_argument_type, typename Operation::result_type>::argument_type argument_type; typedef typename unary_function<typename Operation::first_argument_type, typename Operation::result_type>::result_type result_type; binder2nd(const Operation&, const typename Operation::second_argument_type&); result_type operator() (const argument_type&) const; }; // Creator bind1st template <class Operation, class T> binder1st<Operation> bind1st (const Operation&, const T&); // Creator bind2nd template<class Operation, class T> binder2nd <Operation> bind2nd(const Operation&, const T&);
// // binders.cpp // #include <functional> #include <algorithm> #include <vector> #include <iostream.h> int main() { typedef vector<int>::iterator iterator; int d1[4] = {1,2,3,4}; // // Set up a vector // vector<int> v1(d1,d1 + 4); // // Create an 'equal to 3' unary predicate by binding 3 to // the equal_to binary predicate. // binder1st<equal_to<int> > equal_to_3 = bind1st(equal_to<int>(),3); // // Now use this new predicate in a call to find_if // iterator it1 = find_if(v1.begin(),v1.end(),equal_to_3); // // Even better, construct the new predicate on the fly // iterator it2 = find_if(v1.begin(),v1.end(),bind1st(equal_to<int>(),3)); // // And now the same thing using bind2nd // Same result since == is commutative // iterator it3 = find_if(v1.begin(),v1.end(),bind2nd(equal_to<int>(),3)); // // it3 = v1.begin() + 2 // // Output results // cout << *it1 << " " << *it2 << " " << *it3 << endl; return 0; } Output : 3 3 3
If your compiler does not support default template parameters then you need to always supply the Allocator template argument. For instance you'll have to write:
vector<int,allocator>
instead of:
vector<int>