Prototypes | Header Files | |
RWMathVec<DComplex> |
expandConjugateEven(const RWMathVec<DComplex>&) |
<rw/math/mathvec.h> |
RWMathVec<DComplex> |
expandConjugateOdd(const RWMathVec<DComplex>&) |
<rw/math/mathvec.h> |
Given a complex sequence C(n), n=0, ..., 2N points long, it is a complex conjugate-even sequence if:
C(n) = conj[C(-n)] = conj[C(2N-n)],
and a complex conjugate-odd sequence if:
C(n) = - conj[C(-n)] = - conj[C(2N-n)].
Note that for a sequence to be complex conjugate-even, the imaginary parts of C(0) and C(N) must be 0, and for a sequence to be complex conjugate-odd, the real parts of C(0) and C(N) must be 0. Given the lower half of the sequence, that is, C(n), n=0, ..., N, these functions expand it out to the entire sequence C(n), n=0, ..., 2N.