>
Member Functions | |||
confidenceInterval() operator=() |
standardError() tStatistic() |
tStatisticCriticalValue() tStatisticPvalue() |
value() |
>#include <rw/analytics/linregparam.h> double paramValue = 0.0; double stdErr = 1.0; int degFreedom = 5; RWLinearRegressionParam regparam(paramValue, stdErr, degFreedom);
Class RWLinearRegressionParam models an estimated linear regression parameter using a T distribution. Once a class instance is constructed, it can be used to test some statistical hypothesis about the parameter's value.
>The following simple example prints the 99 percent confidence intervals for all parameters in a linear regression.
#include <rw/analytics/linregress.h> #include <rw/analytics/linregparam.h> #include <rw/rstream.h> // Handles inclusion of iostream. main() { RWGenMat<double> predictorMatrix = "5x2 [1.2 2.1 8 7 3 3.2 6.4 4.6 2 2.3]"; RWMathVec<double> observationVector = "[2.5 3.7 1.4 2.3 5.6]"; RWLinearRegression lr(predictorMatrix, observationVector); RWTValVector<RWLinearRegressionParam> params = lr.parameterEstimates(); for ( size_t i = 0; i < params.length(); i++ ) { cout << "Model parameter " << i << (i==0UL?" Intercept:":":") << endl; cout << " 99% confidence interval: " << "[" << params[i].confidenceInterval(0.01).lowerBound() << ", " << params[i].confidenceInterval(0.01).upperBound() << "]\n" << endl; } return 0; }>
RWLinearRegressionParam();
Constructs an empty linear regression parameter object. Behavior undefined.
RWLinearRegressionParam(double val, double stderr, int degrees);
Constructs a Student T distribution for a linear regression parameter that has mean val, standard deviation stderr, and degrees of freedom equal to degrees.
RWLinearRegressionParam(const RWLinearRegressionParam& a);
Constructs a copy of a.
RWInterval<double> confidenceInterval(double alpha) const;
Returns an alpha level confidence interval for the parameter.
double standardError() const;
Returns the estimated standard error for the estimate. The estimate for the pth parameter of a linear regression is defined by the equation:
where:
,
is equal to the pth diagonal term of the matrix , and n is the number of observations.
double tStatistic(double testval=0.0) const;
Returns the t-test for the hypothesis that the parameter is equal to testval.
double tStatisticCriticalValue(double alpha) const;
Returns the absolute value v for which the parameter would have to differ from testval before we would reject the hypothesis that the parameter is equal to testval at significance level alpha.
double tStatisticPvalue(double testval=0) const;
Returns the P-value for the parameter t statistic under the hypothesis that the parameter is equal to testval.
double value() const;
Returns the least squares estimate for the parameter.
RWLinearRegressionParam& operator=(const RWLinearRegressionParam& p);
Copies the contents of p to self.
©Copyright 1999, Rogue Wave Software, Inc.
Send mail to report errors or comment on the documentation.