>
Member Functions | |||
baseToLast() newObservationVec() |
newRegressionMat() numAdded() |
setBaseToLast() setNewObservationVec() |
setNewRegressionMat() setNumAdded() |
>#include <rw/analytics/regcalc.h> RWAddPredictors<double,double> a;
Class RWAddPredictors<T,S> holds information about the addition of predictor variables to a parameter calculation object's base calculation. This information must consist of the following:
The new regression matrix. This is the regression matrix used in the parameter calculation's objects base calculation with the predictors to be added appended.
The new observation vector. This is assumed to be the same as the observation vector used in the parameter calculation object's base calculation.
The number of predictors added.
#include <rw/analytics/lsqqr.h> #include <rw/rstream.h> int main() { // Full model regression matrix. RWGenMat<double> regMat( "6x3 [1 1.3 .54 \ 1 3.5 .65 \ 1 -2.3 .88 \ 1 8.2 .76 \ 1 -4.2 .32 \ 1 2.4 .43]" ); // Reduced model regression matrix. Contains the first two // columns of regMat. RWGenMat<double> reducedRegMat( regMat(RWAll,RWSlice(0,2)) ); RWMathVec<double> observationVec( "[12.3 15.6 22.3 44.1 32.5 65.2]" ); RWLeastSqQRCalc calcObject; // Set the base calculation for the parameter calculation // object to the reduced regression matrix. calcObject.setBaseCalc( reducedRegMat, observationVec ); if ( calcObject.fail() ) { cout << "Parameter calculation for reduced model failed" << endl; return 1; } cout << "Parameters for reduced model:" << calcObject.parameters() << endl; // Add in the predictor data contained in the last column of // the full model regression matrix using the data change // class RWAddPredictors. RWAddPredictors<double,double> dataChange( regMat, observationVec, 1 ); calcObject.addPredToBaseCalc( dataChange ); if ( calcObject.fail() ) { cout << "Parameter calculation for full model failed" << endl; return 1; } cout << "Parameters for full model:" << calcObject.parameters() << endl; return 0; }>
RWAddPredictors();
Default constructor. Constructs an empty RWAddPredictors object.
RWAddPredictors(const RWAddPredictors<T,S>& a);
Copy constructor. Constructs a copy of a.
RWAddPredictors(const RWGenMat<T>& r, const RWMathVec<S>& o, size_t numAdded, RWBoolean setBaseToLast = FALSE);
Constructs an RWAddPredictors object with the given regression matrix and observation vector. It assumes that the matrix r is obtained from the base calculations regression matrix by appending numAdded columns, and that the observation vector o is identical to the base calculations. If setBaseToLast is TRUE, the base calculations regression matrix is set to r.
RWBoolean baseToLast();
Returns TRUE if the base calculation is to be set to the new regression matrix and new observation vector.
const RWMathVec<S>& newObservationVec() const;
Returns the new observation vector.
const RWGenMat<T>& newRegressionMat() const;
Returns the new regression matrix.
size_t numAdded() const;
Returns the number of predictors added.
void setBaseToLast(RWBoolean s);
Sets the "base to last" option to s.
void setNewObservationVec(const RWMathVec<S>& o);
Sets the new observation to o.
void setNewRegressionMat(const RWGenMat<T>& r);
Sets the new regression matrix to r.
void setNumAdded(size_t na);
Sets the number of predictors added.
©Copyright 1999, Rogue Wave Software, Inc.
Send mail to report errors or comment on the documentation.