TENSOR Functions
Compute the generalized tensor
enabled.
Usage
c = TENSOR_ADD( a, b )
c = TENSOR_DIV( a, b )
c = TENSOR_EQ( a, b )
c = TENSOR_EXP( a, b )
c = TENSOR_GE( a, b )
c = TENSOR_GT( a, b )
c = TENSOR_LE( a, b )
c = TENSOR_LT( a, b )
c = TENSOR_MAX( a, b )
c = TENSOR_MIN( a, b )
c = TENSOR_MOD( a, b )
c = TENSOR_MUL( a, b )
c = TENSOR_NE( a, b )
c = TENSOR_SUB( a, b )
Input Parameters
a—An array.
b—An array.
Keywords
None.
Returned Value
c—The generalized tensor product of a and b. For logical operators (EQ, NE, etc.), a byte type result is returned. Otherwise, the result type depends on the type(s) of the input parameters.
If a is an m dimensional array of dimension lengths a1, ..., am and if b is an n dimensional array of dimension lengths b1, ..., bn then c is a m+n dimensional array with dimension lengths a1, ..., am, b1, ..., bn.
Each element of c is computed as:
c(i1 , . . im, j1 , . . jn) = a(i1 , . . im) % b( j1 , . . jn)
where % symbolizes the operator associated with the selected function. PV-WAVE Operators lists the available PV‑WAVE operators.
Function | PV-WAVE Operator |
---|---|
TENSOR_ADD | + |
TENSOR_DIV | / |
TENSOR_EQ | EQ |
TENSOR_EXP | ^ |
TENSOR_GE | GE |
TENSOR_GT | GT |
TENSOR_LE | LE |
TENSOR_LT | LT |
TENSOR_MAX | > |
TENSOR_MIN | < |
TENSOR_MOD | MOD |
TENSOR_MUL | * |
TENSOR_NE | NE |
TENSOR_SUB | – |
Discussion
The TENSOR functions are useful when it is necessary to apply a binary operator to all combinations of elements of one array with elements of a second array.
Example
Refer to the Standard Library routine WHEREIN, where TENSOR_EQ is used to perform intersections and other related set operations.
Unix: <RW_DIR>/wave/lib/std/wherein.pro
Windows: <RW_DIR>\wave\lib\std\wherein.pro