HostAccess
Developer’s Guide

Disclaimer

Every effort has been made to ensure that the information contained within this
publication is accurate andtoglate. HoweveRogue Wave Software, Idoes not
accept liability for any errors or omissions.

Rogue Wave Software, loontinuously develops its products and services. We
therefore reserve the right to alter the information within this publication without notice.
Any changes will be included in subsequent editions of this publication.

As the compting industry lacks consistent stand&dgue Wave Software, loannot
guarantee that its products will be compatible with any combination of systems you
choose to use them with. While we may be able to help, you must determine for yourself
the compatiility in any particular instanceRafgue Wave Software, Ipmducts and

your hardware/software environment.

Rogue Wave Software, lacknowledges that certain proprietary programs, products or
services may be mentioned within this publication. Tiwggarms, products or services
are distributed under Trademarks or Registered Trademarks of their vendors and/or
distributors in the relevant country.

Your right to copy this publication, in either Faoply (paper) or sefopy (electronic)
format, is linted by copyright law. You must obtain prior authorizationRague
Wave Software, Inbefore copying, adapting or making compilations of this publication.

HostAccesss a trademark of Quovadx Ltd in the United Kingdom and is a registered
trademark inhte USA. Microsoft is a registered trademark and Windows is a trademark
of the Microsoft Corporation. Other brands and their products are trademarks or
registered trademarks of their respected holders and should be noted as such.

CopyrightO 1932013RoguéNave Software, Inc.

2 Developer’s Guide

Contents

DISCLAIMER
CONTENTS
INTRODUCTION
What is HostAccess?
How to use HostAccess
AIF TOOLKIT
Escape Sequence Summary
Using escape sequences
Conventions used
Sculpting the Screen
Managing Controls
Copy and Paste
Root Control Features
Secondary Windows
Buttons
String Lists
Combo Boxes
List Boxes
Manipulating a List Box
Edit Boxes
Validated Edit Boxes
Static Labels
Status Bar
Commands for menus, toolboxes and toolbars
Toolbars and Toolboxes
Menus
Changing Fonts
Invoking Windows Help
Timed Events
ActiveX (COM) Integration
Common Problems
AIF UTILITIES
How AiF Sequences Work
Sequences Summary
Tailoring the Environment
Using Windows
Using AiF menus
Using Selection Boxes

Developer’s Guide

©O N O G WD

10
12
13
15
20
27
30
32
37
43
49
55
60
62
69
74
78
80
84
87
89
20
91
92
101
103
103
105
110
114
117
132

Using Field Input 137

Box Input 142
Save Environment 147
Display Optimisation 148
FORMs 151
Freeze On/Off 154
Host Echo On/Off 156
Applications Enhancement 157
Using Macros 169
Keyboard Control Features 170
Mouse Control 179
Programmable DOS Gateway 182
DOS Keyboard Stacker 184
Printing to a DOS File or Device 187
Data Extraction to DOS and Windows 193
Displaying Images 194
Miscellaneous AIiF Facilities 200
DYNAMIC DATA EXCHANGE 206
How DDE Works 206
DDE Sequences: Summary 207
Using DDE with HostAccess 207
DDE Client Support 208
DDE Server Support 210
USING THE MACRO LANGUAGE 213
Syntax Conventions 213
Using AiF Escape Sequences 214
Declaring Variables 214
Using Functions 215
Using Procedures 218
DESCRIBING IMAGES 235
Image Types 235
Defining a simple image 237
Defining Labelled Images 241
Inbuilt Labelled Images 243
Defining Button Windows for Images 244

4 Developer’s Guide

Chapter

Introduction

Welcome to thélostAccesBPbevel oper’s Guide. This book is des
HostAccesi applications development and is divided into the following chapters:

Chapter Title Topics covered

Chapter 1 Introduction. What isHostAccesand how to make the best us
of it.

Chapter 2 AiF TOOLKIT. How to useHostAccesss Appl i cat i

Facility (AiF) to develop Graphical User Interfac
(GUI)-like applications.

Chapter 3 AiF Utilities. How to use the AiF for screen manipulation anc
DOS library routines, for example, opening and
closing windows, loading menus, controlling

printing.
Chapter 4 Dynamic Data Exchange. How to useHostAccesas a DDE client and as a
DDE server.
Chapter 5 The Macro Language. How to useHostAccesss power f ul
Appendix A Describing Images. How you can describe button images in detail L

Windows AiF escape sequences.

Developer’s Guide 5

CHAPTER 1 INTRODUCTION

What is HostAccess?

HostAccesss really three solutions in one.

UsingHostAccesas a terminal emulator, you can achieve connectivity immediately and then
enhance your screen using the autoGUI and autosculpture functions. These features are described
inHostAccesss User Gui de.

As a @sktop integratoHostAccesbrings data from host applications into your familiar Windows
and DOSbased spreadsheets, word processors and other programs.

As a rejuvenation tool you can HestAccesto transform your host applications quickly and

easy with its extensive toolkit known as the Applications interface Facility (AiF). This has been
designed to enable host developers to rejuvenate their legacy applications without needing to totally
re-engineer them.

Desktop integration and AiF facilities described in this Developer's Guide. If you are a PICK
user, you can also make use of an extensive set of subroutines documented in the PICK Guide,
please contact your dealer for further information.

Typical terminal screen before AutoGUI

D3 /31/96 Telesales System Fruit and
Yegetable Account

Product APPLES Stock
Last Drder 1st Dec 96 New Orders

Outstanding Order 2400 Shipping

Supplier FAST FRUITS Description

Country of Origin AFRICA Bright Red Apples shiny and
soft to touch. Sells well on

Cost Per KG 1231.12 supermarket shelves when
displaved predominently.
Carrier FAST FRUITS
xref APPR1T fTor alternatives.

F1 - Product F2 5 iers F3 - Carriers F8 - Save F9 - Exit F10 - Help

6 Developer’s Guide

INTRODUCTION CHAPTER1

Terminal screen with AutoGUI

B3/31/96 Telesales Systom Fruit and
VYegetable Account

Product RFPLES Stock 18%
Last Order 1st Dec 96 New Orders 18M
Outstanding Order 2400 Shipping Air
Supplier FAST FRUITS Description
Country of Origin EFRICL Bright Red Apples shiny and
soft to touch. Sells well on
Cost Per KG 1231.12 supermarket shelves when
displayed predominently.
Carrier FAST FRUITS
xref APPO1T7 for alternatives.

F1 - Product F2Z - Suppliers F3 - Carriers F8 - Save F9 - Exit F18 - Help :

How to use HostAccess

HostAccess sstae process allows you to implement your unique IT strategy at your own pace.
Begin by creating a tailored GUI, shaping a Windows look and feel for host applications.

The next phase is to integrate your host applications into your standard desktop applications. Data

can be downloaded into any standard spreadsheet and text into any word processor. At this stage,
you are enhancing your h amitDatapgyhange @DH)@ands usi ng
OLE automationHostAccesss t i ght integration of host data
data available to each desktop.

Finally, transform your host applications, changing the way they look, feel and respond.

HostAccesss t ool s give your host applications acces
Open up your host applications to any PC clients, inclb@ikbautomation objects and ActiveX

controls.

Creating a Windows look and feel

HostAccesss Ai F t goa to give appladtibng thessame GUI as your familiar desktop.
Give your host applications any Windows control, including secondary windows, icons and buttons.
Host applications can be made faster, clearer and even fully event driven.

Developer’s Guide 7

CHAPTER 1 INTRODUCTION

AiF is a library foANSI-compliant escape sequences sent from the hésstAccessising
normal terminal display functions in the host application.

Ai F's phased approach puts you in control of the spee
programme. In addition, yownadrive this development with your current host application design
skills, using existing programming languages from COBOL and Basic to FORTRAN and SQL.

Desktop integration

Integrate your host applications into your standard desktop applications usiagfabdard way

of communicating between Windows applications. You can use DDHustsecesas a DDE

client to Windows applications giving your host applications almost total control over any other
Windows product. You can also HestAccessas a DDEserver this means you can write

Windows programs in applications such as Word or Excel which can send or receive data to and
from the host. This is described in Chapter 4, Dynamic Data Exchange.

AdditionallyHostAccesss f i |l e tr amaufrerd aft ac iwlhietriee s tp st snoyst functi o
creating a genuine twa@y environment.

8 Developer’s Guide

Chapter

AiF TOOLKIT

This chapter desbes how you can make full uséloftAcces$o create a Windows look and feel
for your host applications. First, you need tdloseAccesas a terminal emulator to run your
host applications on your PC. Initially your host applications may conlirkeatod work as they
have for years as they do on your old terminals

You can then choose the available GUI functions to transform your terminaHeas#@atess
allows you to transform the terminal screen itself, allowing you to completely transform the
application's look and feel.

A wide range of functions known asAlpplications interface Facility (AiF)are available to all
host developers which enables you to use these features to create a true Windows GUI appearance
for your host applications, withly a minimal amount of coding.

You can uselostAccess Windows AiF to create and use:

Push buttons.

Radio buttons.
Check boxes

Edit boxes.

List boxes.

Combo boxes.
Secondary windows.
String lists.
Commands.

A Menus.

You can use these in a fillieractive fashion, reacting to user input. For example, you can detect
whenever the user clicks on a pushbutton, and react accordingly.

> > > > > > > > >

Developer’s Guide 9

CHAPTER 2

Escape Sequence Summary

Sculpture see from pagels

ESC_1
ESC_2
ESC_3
ESC_4
ESC 5

Turns sculpture mode on or off.
Draws a sculpted box.

Draws a sculpted horizontal line.
Draws a sculpted vertical line.
Changing default colours.

Controls, see from page0

ESC 9

ESC_10
ESC_11
ESC_12
ESC_13
ESC_14
ESC_15
ESC_16
ESC_17
ESC_18
ESC 19

ESC_20
ESC_21

Verifies a nantecontrol is valid.

Destroys a named control.
Enables/disables a named control.
Shows/hides named control(s).

Resizes and/or moves a control's window.
Changes a contfslcolours.

Sets/clears event reporting famed controls.
Sets input focus to a named control.

Sets input focus to an unknown control.
Uses groups of controls.

Returns a given string when an event occurs.

Sets contrgd accelerator character.
Sets the meary of the <Return> key.

Copy and paste, see from pagey.

ESC_22
ESC_23
ESC_24

Copies an area of the screen.
Pastes a saved area of screen.
Clears all slots of saved screen regions.

Root control, see from pag&0.

ESC_25
ESC_26
ESC_27
ESC 28

Creates the root control.

Reads a value from the root control.
Manipulate the root control.
Miscellaneous control functions.

Secondary Windows, see from pag2

ESC_29

10

Secondary Windows mauiation.

AIF TOOLKIT

Developer’s Guide

AIF TOOLKIT

Pushbuttons, check boxes and buttons, see from pagé&

ESC_30
ESC_31
ESC_32
ESC_33
ESC_34
ESC_35
ESC_36
ESC_37

Creates a text pushbutton with a text label.
Creates an image pushbutton.
Display an image.

Commands for toolboxes, toolbars, commandsmenus.

Creates a check box.
Creates a radio button.
Reads a value from a button.
Manipulates a button.

Lists, comboboxes and edit boxes, see from pa®

ESC_40
ESC_41
ESC_42
ESC_45
ESC_46
ESC_47
ESC_50
ESC_51
ESC_52
ESC_53
ESC_70

Creates/adds entries to/remowsgries from string lists.
Read a value from a string list.

Manipulates a string list.

Creates a list box or combo box.

Reads a value from a list box or combo box.
Manipulates a list box or combo box.
Creates an é@dox.

Reads a value from an edit box.
Manipulates an edit box.

Creates a static label.

Attach a validation to an edit box.

Miscellaneous

ESC_56
ESC 91
ESC_92
ESC_93
ESC_94
ESC_95

Changes the Windows pointer

Creates a modal message box.

Sets statubar text.

Changes text font.

Status bar and Windows help functions.

Returns notification after a set time.

Developer’s Guide

CHAPTER 2

11

CHAPTER 2 AIF TOOLKIT

Using escape sequences

To use AiF, you serfdlF escape sequenceom the host to the PC. An escape sequence enables
you to send encoded signals to the host.

Any host process that can send output to a terminal can also use AiF by sending special escape
sequences tdostAccessunning on a PGHostAccesmtercepts thesescape sequences and takes
the appropriate action (for example, saving a screen image).

Software developers normally define these AiF escape sequences so that they can be referenced
globally as variables by their applications code (eithetiatewmncompile time).

AiF escape sequences are standard ANSI X3.64 compliant escape sequences, belonging to the ANSI
APC (Application Program Command) class of sequences.

To use AiF properly, you should be familiar with the concephtbls. Controls are Windows
objects that are heldkostAccess memory which have associated nasnag @l ids).

Many Windows AiF escape sequences have ddrigndhg parameters. Unless otherwise stated,

you can assume that these paramefersto the relevant control id as described here. A eidntrol
is a unique identifier. You must define a control sequence before it can be used in an escape
sequence.

Controls can be defined in a list and then séthbstAccessrom the host as a group.

Format of Escape Sequences

HostAccesexpects AiF escape sequences to conform to a certain format. Every AiF escape
sequence starts with the ESCape character (ASCII decimal value 27). Sequences take the following
format:

ESC_nn; Intl; Int2; ... Intn w String1 ; String2 ; ... Stringn ESC\

Where:
ESC Is the escape character.
_ Is an underscore character. This can be modified if required.
nn Is the number of the particular Windows AiF escape sequence you want
Intl ... Intn Are integer parameters in the AiF escape sequence. These parameters

the AiF escape sequence and are always preceded by a delimiter. If the
has no integer parameters, there are no delimiters befereht@cter.

12 Developer’s Guide

AIF TOOLKIT CHAPTER 2

Is the default delimiter character, although it can be changed.

w Is a literalwj character (signifying Windows). This must be -cager.

Stringl ... Are string parameters in the AiF escape sequence. These strings depen

Stringn AiF escape sequeran@d are separated by delimiters. Often, the first string
be the id of a control or object.

ESQ Is the escape character, followed bfa backslash character).

Delimiters are optional if their parameters are omitted. However, they are mandatory if used to
indicate the order of a parameter.

For example, an AiF escape sequence has 3 optional parametadz. You want to omix and
y from your sequence, ugithe default values. However, you also want to uspdremeter.
Therefore, you must have 3 delimiters precediagtdrameter, to indicate its position.

Note: one of the most common programming errors when using AiF escape sequences is to forget
or misplace the required delimiters

Conventions used

The following conventions are used when coding escape sequences:

A

> > > > > >

String and integer parameters may be optional depending on the escape sequence. Optional
parameters are shown encloseddnds for example{; enable}.

Optionaldelimitersare also enclosed in braces.

Default values for optional parameters are shown with asterisks. For 8kangaanot
enablemeans that the relevant parameter takes the value 2 as a default.

Control idsare case insensitive. For exangifeBUTTON is the same a.button.

Do not use spaces when coding the escape sequences. Spaces are shown in the escape
sequence descriptions for clarity only.

All AiF escape sequence parameters are given labelsyfor clari
The following applies when returning values to the host:
STX Decimal value 02.

CR Decimal value 13 (Carriage Return).

Developer’s Guide 13

CHAPTER 2 AIF TOOLKIT

AiF Example
The following is a Windows AiF escape sequence:

ESC_1 {; enable} {; clear} w ESC\

This escape sequence has escape sequence number 1, takes two optional integesnmylemeters,
andclearand has no string parameters. It turns sculpture mode on/off, sé&é fomderther
information.

Screen Layout

For clarity, the positioning and drawing of the screen is performed in a grid method. The top left
hand corner of any window has the grigrciinates of 1,1, and the bottom right can be 24, 80.
Each character displayed upon the window takaseugell, or grid row and column position.

Coordinates are givenygx, wherey is the number of vertical characters down the screen, and
is the number of characters across the screen.

Note: the topleft corner is position 1;hot position 0,0.

Many of the AiF escape sequences described in the following sectiprmtiaw®-ordinates as
parameters. Unless otherwise stated, you can assume that these parameters useythe standard
system as described here.

14 Developer’s Guide

AIF TOOLKIT CHAPTER 2

Sculpting the Screen

You can use the following group of escape sequences to exptuitptuze facilities of
Windows:

>

Turning sculpture mode on/off.
Drawing sculpted boxes.
A Drawing sculpted lines.

A Changing default colours.

This allows/ou to create raised or sunken images on your screen, withdffe@ of a stone

sculpture. A sculpted image is produced by shading sides of a picture, so when drawing a sculpted
box , the top and left sides of the box are shaded one colour, lawitictimeand right sides of the

box are shaded another colour.

p=

For example, to produce an image of a sunken box, you would need to shade the top/left sides a
dark colour, and the bottom/right sides a light colour.

Because of the walpstAccessculpting wdis, you can have a full sculpted screen without losing
any of your 24 by 80 display. Sculpting works independently of your normal screen, so clearing the
screen does not clear sculpture.

See pagk9for an example of using a natw sculpt a scrae

Colours

Colours for sculpted boxes and lines are choserHimetAccess colour palette This palette
consists of colours-116 as follows:

Number Colour Number Colour

1 black 9 dark grey

2 blue 10 light blue

3 green 11 light green

4 cyan 12 light cyan

5 red 13 light red

6 magenta 14 light magenta
7 brown 15 light brown

8 grey 16 white

Developer’s Guide 15

CHAPTER 2 AIF TOOLKIT

When choosing colour, you can also choossaaecolour (number 17). This represents the
colour of the current background, and has the effect of clearing the relevant lines and/or boxes.

Turning Sculpture Mode on/off
To turn sculpture mode on/off, use the followkig escape sequence:

ESC_1{; enable} {; clear} w ESC\
Where:

enable 1 = disable sculpture mode.
2* = enable sculpture mode.

clear 0* = do not clear existing lines/boxes.
1 = clear existing sculpted lines and boxes.

Turning sculpture mode on or off does not affect the drawing of any sculpted boxes or lines. To
draw a complete sculpted screen very quickly, draw your screen, then set sculpture. mode to

You can also use this escape sequence to just clear scudmad loses, without switching
mode. Clearing lines and boxes sets their border cotteairto

Drawing Sculpted Boxes
To draw a sculpted box, use the following AiF escape sequence:
ESC_2;y;x; h;wid{; coll} {; col2; col3} w ESC\

Where:
y y cceordinate of top of box.
X x coordinate of left of box.
h Height of box, in characters (rows).

wid Width of box, in characters.

coll Colour selection:
1* = use default sculpture colours.
2 = use default colourgversed (for raised instead of sunken appearance).
3 = use col2 and col3 parameters (below) to define colours.
4 = set to clearclear the box from the screen.

col2 Palette colour of top and left sides of bek7 lignored unless coll = 3. See p&afw a
description of the colours.

16 Developer’s Guide

AIF TOOLKIT CHAPTER 2

col3 Colour of bottom and right sides of boxd.71 ignored unless coll = 3.
Example

To draw a box at (10, 2), height 5, width 10, and colours 1 (top/left) and 16 (bottom/right), use:
ESC 2;10;2;5;10;3;1;16wESC \

Drawing Sculpted Lines
To draw a sculpted horizontal line, use the following AiF escape sequence:
ESC _3;y; x;len{; col} w ESC\
Where:
y y coordinate of line origin.
X x caordinate of line origin.
len Length of line, in characters.

col Colour for line:
0* - default top/left colour.
1..17- colour number

See Drawing sculptured boxes on fége find out how to change the default and
Colourson pagel5 for a description of the colours.

To draw a sculpted vertical line, use the following AiF escape sequence:
ESC_4;y;x;len{; col } w ESC\

Wherey, X, len andcol are as described above.

Examples

To draw a sculpted horizontal line at (12, 14), 10 characters (columns) long, with colour 1, use the
following AiF escape sequence:

ESC_3;12;14;10; 1w ESC\

To draw a sculpted vertical line at 81, 5 characters (rows) long, with colour 16, use the
following AiF escape sequence:

ESC 4,;10;31,;5;16wESC\

Developer’s Guide 17

CHAPTER 2 AIF TOOLKIT

Changing Default Colours

To change default sculpteaours, use the following AiF escape sequence:
ESC_5; top-left ; bot-right w ESC\

Where:

top-left Default top side and left side colour. 1..17: colour number. See @oloul
pagel5for a description of the colours.

bot-right Default bottom side and right side colour. 1..17, as described above.

These colours will be used as defaults for all subsequent sculpted box and line drawing.

Example: Sculpted Drawing

Thefollowing diagram shows how you can use the sculpture features of the Windows AiF to
produce lines and boxes. The example turns sculpture mode on, and draws three sculpted boxes,
then a sculpted horizontal line (in a box), and a sculpted verticaalinexfin

ESC_1w ESC\

ESC 2;10;2;5;10;3;1; 16w ESC\
ESC 2;10;14;5;10;3;1; 16w ESC\
ESC 2;10;26;5;10;3;1;16wESC\
ESC 3;12;14;10; 1w ESC\

ESC 4;10;31;5; 16w ESC\

18 Developer’s Guide

AIF TOOLKIT CHAPTER 2

Example of sculpting the screen using a macro

REM

REM Macro to demonstrate sculpted line drawing

REM using boxes that touch and those that do not.

REM Also using vertical and Horizontal lines to split boxes.
REM

REM For best results, select the NORMAL Attribute Colour
REM of Black foreground on Lightgrey background.

REM

REM Turn Scul pture mode ON. print chr$(\d7) ; fA_1v
REM Draw 3 Boxes .

print chr$(27) ; A_2;10;2;5;10; 3;\td; 1pwdnt r (7
chr$(27) ; ﬁ_2;10;14;5;10;3;1;\d)6wpntth$(27l)|r$() ; fi
Ai_2;10;26;5;10;3;1;16wo0\0;; chrs$(27) ;

REM Draw 2 Lines , Horizontal & Vertical

print chr$(27) ; A_3;12; 14; 10%0Lwopr;i ncthresh(r37)27;) 0

i_4;10;31;5;16w0o ; \@ehrs$(27) ; i

REM Draw 4 Boxes directly underneath each other.
print chr$(27) ; @A_2;10;40;1;30;3;1\dapwprinthrs$(27)

chr$(27) ; ﬁ_2;11,40 1;30;3;1;\dapwprijint th($(7)27) i
A _2;12;40;1;30; 3; 1; 16WO\0;; cphrrim(t2hr;$ (7)) ;

ﬁ_2 13;40;1;30; 3; 1;16w0\c‘),, cphrri(t2 chr;$(R27)

i 2;101;;_‘4;30;3;1;16wc‘) ; tch;r $(27) fi

REM NOTES : Please note that each line has the ; at the end.
REM This will suppress the CRLF and stop the screen from REM
scrolling.

Developer’s Guide 19

CHAPTER 2 AIF TOOLKIT

Managing Controls

These section®dl with general manipulation of specific controls, which have names given by
control-id parameters.

You can createontrol groups, containing several controls. These control groups are created with
specific namescontrol group ids.

Verify a Control

To verify that a named control has been created (i.e. verify theidastrouse), use the
following AiF escape sequence:

ESC_9 w control-id ESC\
Where:

control-id Control id or group id.
This returns:

<STX> status < CR>
Where:

status 0= Controtid/group-id not in use

1= Controkid/group-id is in use

Enabling/Disabling a Control
To enable or disable a named control (or control group), use the following AiF escape sequence:

ESC_11 {; enable} w control-id ESC\
Where:

enable 1 = disable control.
2* = enable control.

control-id Control id or group id.
Enabled controls will accept user input, disabled controls will not.

If you disable a control that currently has focus, odwank if the application were the active top
level Window, then focus is shifted to the root.

Note: disabled controls are not greyed thuty simply will not accept any user input.

Showing/Hiding a Control
To show or hida named control (group) on the screen, use the following AiF escape sequence:

ESC_12 {; show} w control-id ESC\
Where:

show 1 = hide control.

20 Developer’s Guide

AIF TOOLKIT CHAPTER 2

* = show control.
control-id Control id or group id.

If you hide a control that currently has focus, or weaid if the application were the active top
level Window, then focus is shifted to the root.

Destroying a Control
To destroy a named control, string list or control group, use the following AiF escape sequence:

ESC_10 {; delete} w control-id ESC\
Where:

delete Use only if the id is that of a control group:
1 = do not delete controls inside group
2* = delete all controls in group.

control-id Control id, string list id or control group id.

Destroying a control will flush it fradostAccess memory. The control is immediately removed
from the screen.

If the specified control currently has focus, or would have focus if the application were the active
top level Window, then focus is shifted to the root.

Deleting a control group wily default delete all the controls in that group. To retain the controls,
set thedeleteparameter to 1.
Re-sizing/Moving a Control’s Window

To resize and/or move a cont@Window, use the following AiF escape sequence:
ESC _13;y; x; h;wid w control-id ESC\

Where:
y New y ceordinate of top of control.
X New x ceordinate of left of control.
h New height of control, in characters.
wid New width of control, in characters.

control-id Control id.

If y andx are set to (0,0), then the window is not moved.

Developer’s Guide 21

CHAPTER 2 AIF TOOLKIT

Changing Control Colours

To change the foreground, background and grayed colours for a control, use the following AiF
escape sequence:

ESC_14 {; fore} {; back} {; grayed} w control-id ESC\

Where:
fore Foreground colour, in range 1..16. (*=16).
back Background colour, in range 1..16. (*=1).
grayed Grayed colour, in rangel. (*=1).

Used by some controls when disabled.
control-id Control id.

How the colours are used depends on the control type and contents. Text labels for buttons are
always shown in the foreground colour (unless the control is disabled).

Reporting Events
When an event is reported to the host, information about that event is sent in the following format:
<STX>WC<CR>id , event{, Argument} <CR>

Where:
wcC Literal characters.
id Control id of control associated with the eventfan@event available.
event Event number see Event Numbers Defined below.

Argument Optional argument associated with event.

Event Numbers Defined
Currently defined event numbers are:
1 ENTER pressed.
2 ESCape pressed.
3 Button clicked.
4 Checkbox or radio button check state change.

Argument: 1 = button is now unchecked, 2 = button now checked.

5 Contents of edit box, or the contents of the edit box part of simple and dropdown con
boxes, have been changed by user.

Argument: edit box contents, escape sequence number 1, see Reading from an edit
pages4, for the format.

22 Developer’s Guide

AIF TOOLKIT CHAPTER 2

6 List box selection change.

Argument: host string of newly selecte
7 List boxdouble click.

Argument: host string of double clicked item.
8 FOCUS: sent whenever the user changes focus from one control to another.

Returns 4 parameters: old control (string label), event (1=ENTER, 3=CLICKED,
9=TABBED), New control (string labalyd Amend flag (set to 2 if old control had chan
since it gained focus, otherwise 1).

9 TAB: control has been tabbed from.

10 CLICKEDON: left mouse down event over control when a different control, or the roo
the focus, resulting in focus moviaghe clicked on control.

Argument: id of control that has just lost the focus.
11 Secondary Window activate: the user is changing focus from a secondary window.
12 Secondary Window close: the user is trying to close a secondary window.

13 LISTBOX:tells host when a user scrolls off the end of a partially displayed string list.

Enabling Event Reporting

You can set or clear specific event reporting for named controls or control groups. For example,
you could disableporting for return keys pressed by the user.

To set/clear event reporting for controls/groups, use the following AiF escape sequence:
ESC_15 {; enable} ; eventl {checksum} w control-id ... ESC\

Where:

enable 1 = disable events (discards outstandingestasients).
2* = enable events.
3 = stack events.

eventl ... Event number see from page2

checksum 1* No checksumming
2 Use length checksum.

control-id Is the control id or control group id.

Note: Destroying a control wilush outstanding events.

Examples

To disable button click reporting for button witkbiatj, use the following AiF escape sequence:
ESC_15; 1; 4w butl ESC\

To enable enter key and button click reporting for button whblbut, use

Developer’s Guide 23

CHAPTER 2 AIF TOOLKIT

ESC_15; 2; 1; 3w helpbut ESC\

Requesting events for use with stacked events.

When you enable an event you can specify that the events are stacked. This means the events are
not reported until your program is ready to receive the evamydthean send an escape
sequence to get the next event from the stack.

To request an event from the stacked event handling system, use the following AiF escape
sequence:

ESC_6 ; mode w {control_id} ESC \
Where:

mode 1= Get next stacked event. Wait if nerg\s available.
2= Get next stacked event. Return if no event is available.
3= Get last reported stacked event.
4= Flush event stack.

control_id If mode is 1 or 2, control_id is optional and takes events only from that r
control. Control_id isot relevant for modes 3 and 4.

Getting events
ESC_6 ; {wait_code} w { control-id } ESC\
Where:

wait_code 1 = get next event. Don't respond until an event is generated.
2 = get next event, or return immediately.
3 = get lasevent.
4 = flush all events.

24 Developer’s Guide

AIF TOOLKIT CHAPTER 2

control-id1 ... Is the control id or control group id.

If control_id is specified, then the command applies only to that control. If it is not specified, then
it applies to all controls.

This returns:

<STX>WC <CR> control event {argument} <CR>

Where:
control Control id or *?" if no event available.
event Event number.
argument Optional argument for event.

Setting Input Focus to a Named Control
To setthe input focus to a named control, use the following AiF escape sequence:

ESC_16 w control-id ESC\
Where:

control-id Is the control id.

If the id given does not match a known control
backgrounderminal characters.

Setting Input Focus to an Unknown Control

To set input focus to the next/previous control in the tabbing order, use the following AiF escape
sequence:

ESC_17; direction w ESC\
Where:

direction 1 = set the input focus to the previoaoatcol.
2* = set the input focus to the next enabled and visible control.
If there are no such controls, focus will be left with the root.

Developer’s Guide 25

CHAPTER 2 AIF TOOLKIT

Using Control Groups

You can create contrgloups, holding several different controls, for ease of use. Once you have
created groups of controls, you can use any of the generic control management facilities
documented in this section on entire control groups (for example, showing/hiding controls).

To add or remove controls to/from a control group, use the following AiF escape sequence:
ESC_18; add w group-id ; control-id1 ... ESC\

Where:
add 1 = remove one or more controls from a control group
2* = add one or more controls to a control group.
group-id Control group id.
control-id1 Individual control id(s).

You have to define (create) each control id separately before using it
control group.

Creating a Control Group

To create a new control groapd one or more controls to a group with the required id and the
group will be automatically created.

Example

To create a control group nanfeditons, holding the controlgdiol, radio2 andcheckl, use the
following AiF escape sequence:

ESC_18; 2w buttons ; radiol ; radio2 ; checkl ESC\
To delete the contrehdio2 from that control group, use the following AiF escape sequence:

ESC_18; 1w buttons ; radio2 ESC\

Returning an Alternate Message

To tell a control to ratn a different string to the host when the given event occurs for which
reporting is enabled, use the following AiF escape sequence:

ESC_19; event; class w control-id ; message ESC\

Where:
event Event number, see pa2e for details.
class 1*= Send message back as a string (default behaviour).

2 =Treat message as the name of a macro file to execute.

3 = Send message back as a string and pass focus back to
Terminal Window

control-id Control id.

26 Developer’s Guide

AIF TOOLKIT CHAPTER 2

message Alternate mesge.

When an alternate message is set, it will be sent to the host unmodified. It will not have a CR sent
after it.

For example, to cause a single chargXtep be sent to the host when thg control has been
tabbed to (tab = event number 9k:us

ESC_19; 9w ed; XESC\

Setting the Accelerator Character

To set the accelerator character for a named control, use the following AiF escape sequence:
ESC_20 w control-id ; accel ESC\

whereaccelis the accelerator character.

This allows the control to receive the focus when the user presses Alt plus the given key, but only
when the control is capable of accepting the focus, and keystrokes are being processed by controls
(if the root ha the focus, they may not be). This does not change the visual appearance of the
control at all. It is usual to indicate to the user what the accelerator key is by underlining it in the
label nearest the control.

In the case of button controls (push, &ead radio), there is no need to issue this escape, since
the accelerator key will be set automatically by searching the label for the first and prefixed
character.

Example

To allowAlt/E to be the accelerator key for control witfedtdt, use:
ESC_ 20w edit ; E ESC\

Setting the Return Key Meaning

Normally, pressing a Return key reports a RETURN event to the host. To set the event returned
(for a named control), use the following AiF escape sequence:

ESC_21; meaning w control-id ESC\
Where:

meaning 1 =set RETURN event returned to be a TAB.
2 = set RETURN event returned to be a RETURN (i.e. default retu
behaviour).

control-id Control id.

Copy and Paste

The following AiF sequences enable yaopy a region of screen, including sculpting, and paste it
into another specified region.

Developer’s Guide 27

CHAPTER 2 AIF TOOLKIT

Copying an area of the screen

The following sequence copies a rectangular region afetie, somplete with sculpting, into a
specified slot.

ESC_22; slot; x; y; right ; bottom ; optionw ESC \

Where:

slot Slot number. The minimum is 0, the maximum is 255. If the slot
already in use, it is overwritten with the new region. If the option
specified is 1, then the region is also cleared of text and sculptin

X x coordinate of rectangle.

y y ceordinate of rectangle.

right x right ceordinate of rectangle.

bottom y bottom ceordinate of rectangle.

option Choose one of the followitgtions:

0 = Leave rectangle.
1 = Clear rectangle and save.

2 = Clear rectangle only.

28 Developer’s Guide

AIF TOOLKIT CHAPTER 2

Pasting a copied region of screen

The following sequence pastes @mnegfi the screen copied into a slot using ESC_22 to either the
position from which the region was saved, or at nendowtes if specified.

ESC 23 ;slot;x;y w;esc \

Where:

slot Slot number to restore. If an unused slot is specified, a jourrsajenvedisoe
generated and the action ignored.

X x caordinate where the saved region of screen will be pasted to. If x al
left blank, the region will be pasted to the position from which the regic
copied.

y y caordinate where the sawegjion of screen will be pasted to. If x and y
left blank, the region will be pasted to the position from which the regic
copied.

Note: the region specified by x and y must be visible on the screen, offscreen regions will be
ignored.

Clearing slots of copied screen regions
The following sequence clears all slots of screen regions copied using ESC_22.
ESC_24 w ESC\

Developer’s Guide 29

CHAPTER 2 AIF TOOLKIT

Root Control Features

This section describes some escape sequences that may be used to paotagentinel. This is
not really a control at all, but an interface to manipulate behavioural aspects of the underlying
terminal characteigplay area in so far as they relate to embedded controls.

To use these functions, you must first create the one amaintpntrol. Once created,
subsequent attempts to create it are ignored.

Once created, you can use some of the standard contigemant escapes on it (such as the
event management escape, ifrgdaterested in, say, when the root is tabbed to).

Creating the Root Control

To create the one and ofriyotj control, use the following AiF escape sequence:
ESC_25w ESC\
It has the fixed id strirjgpot;.

Reading From the Root Control

To read a value from tireotj control, use the following AiF escape sequence:
ESC_26; 1w ESC\

A value will be returned to the host. The value returnedtistilie permittegstate of the root,
sent in the following format:

<STX>value<CR>
Where:

Value 1 =tabinis permitted.
2 =tabin is not permitted.
? = error detected.

Manipulating the Root Control

To disable or enabjabrinj to the root, use the following AiF escape sequence:
ESC_27; 1; {tabin} w ESC\
Where:

tabin 1 = disablgtabin; to the root.
2* = enablgtabin.

Naming a Base Control Group

To name a control group to which all subsequently created controls will be automatically added, use
the following AiF escape sequence:

ESC_28; 1w group ESC\

30 Developer’s Guide

AIF TOOLKIT CHAPTER 2

Where:

group The name of the control group. If this controlugr does not exist, it will be created.

Setting Default Foreground/Background Colours

To set the default foreground and background colours for use when subsequent controls are
created, use ttiellowing AiF escape sequence:

ESC_28; 2 {; fore} {; back} {; grayed} w ESC\
Where:

fore Foreground colour, in rangd.@. *=16.
back Background colour, in rangé&@. *=1.

grayed Grayed colour, in rangelé. *=5, for subsequently created controls.

Forcing Palette Reconstruction

To force palette reconstruction (back to the original default setup), use the following AiF escape
sequence:

ESC_28; 3w ESC\

This is useful in some situations after removing/addéhgd?aur bitmaps. All controls showing
bitmaps will be redrawn when this happens.

Developer’s Guide 31

CHAPTER 2 AIF TOOLKIT

Secondary Windows

You create secondary windows inside your main terminal window. If the secondary window has
been correctly defined and is activaedyser can perform normal Windows manipulation
functions, such as:

>

Entering data.
A Minimising/maximising the window.
A Re sizing and #gositioning the window.
This section describes how to create, destroy, activate, hide and show secondary windows.

Scaling

You can scale secondary windows, by defining the number of columns and rows in the window,
then defining the windgsvactual size. By default, the scaling is 1, and the secondary window is
created just large enough tadhtble terminal window inside it.

This shows a secondary window, with top left corner at (3,3), holding a terminal window of width
40, height 10, and title “Hello”.

32 Developer’s Guide

AIF TOOLKIT CHAPTER 2

Creating a Secondary Window
To create a secondary windage the following AiF escape sequence:

ESC_29; 1; top; left; hl; widl {; wid2} {; h2} {; fg} {; bg} {; mod} {; bord} {; bar} {; min} {; max} {;
orig} {; size} {; page} w id ; title ESC\

Where:
Top

Left
hl

widl

wid2

h2
Fg
bg
mod
bord
bar

Window top. Cell offset.
Note:

Whenorig = 1, this is the pixel row of the top/left of the window, i.e. one more the
number of pixels visible above the top of the sub window frame.

Whenorig = 2, this is one more than the number of pixels of the application wind
including the window fraamvisible above the top/left of the window frame.

Whenorig = 3, this is the row/column number measured in character cells within
base window of the top row/ first column of characters in the subwindow. The w
border is drawn above this position.

Window left. Cell offset. See notéoip.

Number of columns in terminal windowhIfandwidlis smaller thah2 andwid2, the
font will be scaled down so the correct number of cells will still appear in the sut

Number of rows ingrminal window. Iilandwidlis smaller thah2 andwid2, the
font will be scaled down so the correct number of cells will still appear in the suk

Window width- use to scale the window horizontally.

Whensize = 2 andwid2 is smaller thawidl, the subwindow is initially drawn with a
width ofwid2 character cells (measured by the cell size of the base wirslpes. 1f
orwid2 is greater thawidl, wid2 andh2 will have no effect.

Window height use to scale the window vertically.

Foreground colour of terminal window 1..16, *=16

Background colour of terminal window 1..16, *=1

Modality: 1 = modeless, 2* = modal.

Border type: 1 = none; 2* = thin, not resizeable, 3 = thick, resizeable.

Title bar type: 1 = none; 2*normal.
If you have a title bar, a default thin border is used by default, although you can
thick border usingord.

Developer’s Guide 33

CHAPTER 2 AIF TOOLKIT

min 1*= do not show a minimise box.
2 = show a minimise box.
3 = do not show a minimise box but show close.
4 = show minimisand close.

max 1*= do not show a maximise box.
2 = show a maximise box.
3 = do not show maximise box and create the window hidden.
4 = Show maximise box and create the window hidden.

The window will become modeless if windows are created hidden
orig Window position:
1 = relative to the screen, in pixels.

2 = relative to the application window, in pixels.
3* = relative to the main terminal window, in character cells.

size Interpretation of secondary window size:
1 = pixel size of whole window, includmmag-client parts.
2* = size in cells of the displayed terminal window, to which theienparts are
added.

page Specify the number of backpages where:

0* =an active page and the number of backpages which have been spemifiigiia,
Edit fromthe HostAccessenu.

1= an active page and no backpages.

2 =an active page and 1 backpage.

3 = an active page and 2 back pages and so on.

Id Control id of the secondary window.
title Title.

Example of how to create a secondary window.

To create aecondary window at (3,3), holding a terminal window of size 40x10, use the following
AiF escape sequence:

ESC 29;1;3;3;10; 40 w Help ; Hello ESC\
The Windows window will be made exactly the right size to hold the terminal window inside it.

The cantrol id isjHelp j; the title will bgHello

This will produce the following display on your terminal window:

34 Developer’s Guide

AIF TOOLKIT CHAPTER 2

Destroying a Secondary Window
To destroy secondary windows, use the following AiF escape sequence:

ESC 29; 2w id ESC\
Whereid is the window id.

Activating a Secondary Window

To activate secondary windows, use the following AiF escape sequence. This will bring the active
window to the front.

ESC_29; 3w id ESC\
Whereid is the window id.

Developer’s Guide 35

CHAPTER 2 AIF TOOLKIT

Setting Focus for Output in a Secondary Window

To set the focus for host output to a secondary window, use the following AiF escape sequence.
This sequence is useful for controlling hostubatpdifferent windows as the user may change the
focus of the secondary window manually by clicking on the active window.

ESC_29;3;1wid ESC\

Hiding/Showing a Secondary Window
To hide or show a secondary windoge the following AiF escape sequence:
ESC_33; 2; show w id ESC\

Where:
show 1 = Hidden.
2 = Minimised.
3* = Normal.
4 = Maximised.
id Toolbox/window id.

36 Developer’s Guide

AIF TOOLKIT CHAPTER 2

Buttons

The following sections describe how to use AiF escape sequencesaadcusate

> >» > >

Text push button.

Image push button.

Images (treated as static buttons).
Radio buttons.

A Check boxes.

When using these escape sequences, you can describe button images for a button in great detail.

Creating a Text Button
To create a pushbutton holding a text label, use the following AiF escape sequence:

ESC_30;vy; x; h; wid {; visible} {; enabled} {; font} w control-id ; label ESC\

Where:

y
X

h
wid

visible

enabled

font

control-id

label

y caordinate of top of button.
x co-ordinate of left of button.
Height of control, in character cell units.
Width of control, in character cell units.

1 = create hidden.
2* = create visible.

1 = initially disabled.
2* = initially enabled.

Selects button labfont:

1* =Terminal.

2 = System.

3 = 10pt Helvetica.
4 = 8pt Helvetica.

Styles 3 and 4 map on to the Helvetica fonts used in Bsigntditmap
pushbuttons and in dialog static text used by the application.

Control id-mustbe uniquend may not be “root?”
Button label.

Creating An Image Button

To create a push button holding a bitmap image and (optionally) a text label, use the following AiF
escape sequence:

ESC_31;vy;x;h;wid{; visible} {; enabled} {; font} w control-id ; spec ESC\

Developer’s Guide 37

CHAPTER 2 AIF TOOLKIT

Where:
y y cceordinate of top of button.
X x coordinate of left of button.
h Height of button, in rows.
wid Width of button, in columns.
visible 1 = create hidden, 2 = create visible(*).

enabled 1 =initially disabled, 2 = initially enabled(*).
font Selects button label font:

1* = Terminal.

2 = System.

3 = 10pt Helvetica.
4 = 8pt Helvetica.

Styles 3 and 4 map on to the Helvetica fonts used in Bsigéntitmap
pushbuttons and in dialogtst text used by the application.

control-id Control id.

spec See Appendix A, Describing Images for details.

38 Developer’s Guide

AIF TOOLKIT CHAPTER 2

Image Specification for Pushbuttons
This powerful feature allows you to create pushbuttons holding:

>

Bitmap images (.BMP files).

Icon images (.ICO files).

Bitmaps or icons in resource files (.DLL or .EXE files).
Example

>

>

To create a pushbutton calkedp, displayed at (10,10), with height 5 and width 10, using the
bitmap image held in the fi# pictures\ question.bmp, use the falwing AiF escape sequence:

ESC_31;10; 10; 5; 10w help ; file=c:\pictures\question.omp ESC\
See Appendix A, Describing Images for details.

Displaying an Image

To display an image on the screen, youreate@ disabled push button, with an image defined
using an image specification string. This allows a simple way of displaying icons or bitmap images.

To display an image, use the following AiF escape sequence:
ESC_32;vy; x; h; wid{; visible} w control-id ; spec ESC\

Where:
y y coordinate of top of button.
X x coordinate of left of button.
h Height of control, in character cell units.
wid Width of control, in character cell units.
visible 1 = create hidden.

2* = create visible.
control-id Control id.
spec See Appendix A, Describing Images for details.

Note: the label font is set to the terminal font. This does not usually matter since disabled buttons
normally just hold an image.

Developer’s Guide 39

CHAPTER 2 AIF TOOLKIT

Example

To display an image calssderisk displayed at (10,10), with height 5 and width 10, using the
bitmap image held in the fiir.bmp, use the following AiF escape sequence:

ESC_32;10; 10; 5; 10 w asterisk ; file=star ESC\

Creating a Check box
To create a check box, use the following AiF escape sequence:

ESC_34;y; x; h;wid {; visible} {; enabled} {; font} {; left} {; check} w control-id ; label ESC\
Where:

y y coordinate of top of check box.
X x coordinate of left of check box.
h Height of check box, in rows.
wid Width of check box, in columns.
visible 1 = create hidden.

2* = create visible.
enabled 1 = initially disabled.

2* = initially enabled.
font Selects font:

1* = Terminal.

2 = System.

3 = 10pt Helvetica.

4 = 8pt Helvéca.

left 1 =text on left.
2* = text on right.
check 1* = initially unchecked.
2 = initially checked.
control-id Controlid-must be uni que, and may not
label Text label.

The event reporting mask is initially set to all bits clear.

40 Developer’s Guide

AIF TOOLKIT CHAPTER 2

Creating a Radio Button
To create a radio button, use the following AiF escape sequence:

ESC_35;y; x; h;wid {; vis} {; en} {; font} {; left} {; check} w r-id {; label} {; g-id} ESC\
Where:

y y coordinae of top of radio button.
X x co-ordinate of left of radio button.
h Height of radio button, in rows.
wid Width of radio button, in columns.
vis 1 = create hidden.

2* = create visible.
en 1 = initially disabled.

2* = initially enabled.
font Selects font:

1* = Terminal.

2 = System.

3 = 10pt Helvetica.
4 = 8pt Helvetica.

left 1 =text on left, 2* = text on right.

check 1* = initially unchecked, 2 = initially checked.

r-id Radio button controlidmu st be wuni que, and may
label Text label for buttonoptional.

g-id Control group id, if relevanbptional.

The event reporting mask is initially set to all bits clear.

Using Radio Buttons in Groups

If you give a control group id, the button control is automatically adtatigooup. The group is
created if it does not exist.

When the first radio button control is added to a radio button group, it is forced to be checked,
even if the host has not asked for it. When subsequent radio buttons are added to a radio button
group if an initially checked button is added, the check is removed from the previously checked
button in the group.

These rules ensure that exactly one radio button in a group will be initially checked. It also means
that when creating the controls, if taey created as visible, and the initially checked button is not
going to be the first, the user will momentarily see the check on the first button. To avoid this,
create radio buttons initially hidden, and then show them all at once.

Developer’s Guide 41

CHAPTER 2 AIF TOOLKIT

Example: Using Buttons
This example displays the following on your terminal window:

A 3x8 push button calleeixt, at (12,1), labelled "Label".

A 3x8 image button callbdlp, at (12,10), using the image held in the file
¢\ bitmaps\ f1lhelp.bmp.

A 8x16 image calléafo, at (1,10), using the imagebitmaps\ easyacc.bmp.
Three check boxesheck], check2andchecks.

A Two radio buttonradiolandradio?2.
using the following AiF escape sequences:

> > > >

ESC 30;12;1;3; 8w text; Label ESC\
ESC _31;12;10; 3; 8w help ; file=c:\bitmaps\flhelp.bomp ESC\
ESC_32;1;10; 8; 16 w logo ; file=c:\bitmaps\easy-acc.bmp ESC\

ESC 34;14;20; 2; 10w check3; Check 3 ESC\
ESC _35;10; 33; 2; 10w radiol ; Radio 1 ESC\

.ﬁ?'l

FIAEL IMMOYATIOMNS LTD

[T Check 1) Radio 1

[T Check 2) Radio 2
Help

[Check 3

Reading a Button

You can read when check boxes or radio buttons have been checketbhed idethe following
sections.

In all cases, a value will be sent to the host. This is formatted as:

<STX><value> <CR>
If an error is detected in the arguments, the value returned is a single question mark (STX ? CR).

42 Developer’s Guide

AIF TOOLKIT CHAPTER 2

Reading a Button’s Check State
To read the check state of a button, use the following AiF escape sequence:

ESC_36; 1w control-id ESC\
Where:

control-id Is the id of the button.

All buttons have a check state, but it is only meaningful theestdte of check boxes and radio
buttons.

Reading Which Button is Checked

To read the id of a radio button in the group that is currently checked, use the following AiF escape
sequence:

ESC_36; 2w control-id ESC\
Where:

control-id Is the id of the button group.

Setting/Clearing a Button

To set or clear a given radio button or check box, use the following AiF escape sequence:
ESC_37; 1; change w control-id ESC\

Where:

change 1 = clear (uncheck) the radio button or check box.
2* = set (check) the radio button or check box.

control-id Is the id of the button group.

When doing this to a radio button that is part of a radio button group, the button is always checked;
and the previgsly checked button in the group (there must be one) is always unchecked.

String Lists

String lists are used in conjunction with list boxes and combo boxes. String lists contain the entries
used to populate these boxes. String listseated and managed quite separately to the list/combo
boxes which use them. You can therefore use a single string list in multiple boxes, and create and
destroy boxes without destroying the underlying data.

Creating String Lists

To create string lists, either download the strings from the host, or read them in from a PC file. The
second form is better suited to longer lists. Although there is no inbuilt limit to the number of items
in such a list, they are not intended foy l@ge lists, because:

)

A list box control cannot contain more than 64k of text, for example, if the average string
length is 90 bytes, a list box will not hold more than approximately 700 items.

String lists are held in memory at all times.

>

Developer’s Guide 43

CHAPTER 2 AIF TOOLKIT

>

The time requed to create large lists will be unacceptable to users.

The time required to populate list/combo boxes with large lists will be unacceptable to
users.

A realistic limit is a few hundred items.

p=

Format of String Lists

In its sinplest form, a string list hasid{a name), and an ordered sequence of strings. The order
defines the default order in which the strings are displayed in a list or combo box (although this can
be changed when the boxes are actually created).

String listsnay also store a second, hidden, string for each item. This string is not displayed to the
user, but can be used by the host application as an alternative way for list items to be specified in
messages exchanged betwtetAccesand the host. See padgbsnd46for examples.

44 Developer’s Guide

AIF TOOLKIT CHAPTER 2

Manipulating String Lists
To create, add entries to and remove entries from, string lists, use the following AiF escape
sequence:
ESC_40 {; add} w string-id ; text ; entryl... ESC\
Where:
add 1* = add strings to string list.
2 = remove strings from string list.
string-id String list id.
text The display text of the string list entry before which the new strings are t
inserted. Ignored iemoving entries.
entryl ... 1st and subsequent entries to be added/removed.

The entries in the list contaifdesplaypart, and optionally,jaidden part. If present, the hidden

part is separated from the display part by a comma (so you cannot have a comma in the display
part). If the hidden part is not given, a default hidden value will be automatically created if it is ever
neededthis will be a sihg representation of the position of the entry in the string list (starting

from 1;i1j, i2j, i3j etc).

List entries to be added/removed are given directly or indirectly. When given directly, a string
parameter specifies the list entry in the format:

<display-part> <, hidden-part>

If a string parameter starts withj@n character, it is treated as an indirect entryi@ihs
stripped off, and the remainder treated as a PC file name. The file contains a list of entries in the
above format. It is pos##to mix the direct and indirect forms in a single escape sequence.

Note: the comma ang@®;j characters cannot normally be used in display strings because of their
special significance in the above formats. However they can be changedi&iee gagsdls.

When adding strings, the second string parameter contains the display text of the existing string list
entry before which the new entries are to be inserted. If missing, the new entries are added to the
end of the list.

Whenremoving entries, the hidden parts of entries are ignored.

Example of a string list

Consider a host application that needs to get the user to select a personnel record from a database.

Each record includes the persamame. Edicrecord has a record number. The host application
wants to use a drajfown list style combo box (one in which the user cannot type an entry, but has

Developer’s Guide 45

CHAPTER 2 AIF TOOLKIT

to select from the list) to get the name. The host application is not really interested in the text of
name, but the record number it relates to.

This is more suited to a string list with hidden stringgdiBpéaystrings are the names of the

people, the hidden strings are the associated record numbers. The host creates such a string list,
then asstiates it with @iropdown combpstyle box. The host also specifies that it wants to use

the hidden strings when exchanging informatiorHesbAccesabout the selected list items.
HostAcceswill then send back the record number of the selected ha the host application

can use directly.

Create a list of people, with hidden strings (record numbers in some database). The bulk of the list
is created from a PC file calpbple.Ist To this are added 2 people given directly. The list will be
calledipeoplg and will eventually contain the following entries, in the order given:

Display text ~ Hidden text Source

D. Bailey 173 People.lst
M. Woolley 174 People.Ist
G. Baker 10 People.lst
F. Carden 191 People.lst
A.Hedgecock 160 Direct from host
P.Hall 143 Direct from host

ESC_40 w people ;; @people.lst ; A.Hedgecock, 160 ; P.Hall, 143 ESC\

people.lstis a standard DOS file with <CR><LFharacters separating each line of text. The file
name could also include the full directory path, for exaipiedows\ data\ people.Ist By
default, the path is yoHostAccesslirectory. In this examplaeople.Istlooks like this:

D.Bailey, 173
M.Woolley, 174
G.Baker19
F.Cardenl9l

Example 2 - String lists

The host application has a screen on which one of the pieces of information the user has to enter is
a city name. The host application designer chooses to do this with a simple conimhbas &

list of common cities, but will also let the user type in a cigyrtbgon the list. All the host
application wants to get from the user is the text of the city name.

46 Developer’s Guide

AIF TOOLKIT CHAPTER 2

This is best suited to the simple form of string list, without uselehtsttings. The host
downloads the list of cities in a string list, then creiagée combpstyle box. When extracting

the selected city, or the name the user entéethccessends the relevant text to the host.
Example

Create a list containititg following cities: Birmingham, Bristol, Coventry, Leeds, London,
Manchester, and York, calleities.

ESC_40 w cities ;; Birmingham ; Bristol ; Coventry ; Leeds ; London ; Manchester ; York ESC\

Reading From a String List
In all cases, a value will be returned to the host. This is formatted as:

<STX> value <CR>
If an error is detected in the arguments, the value returned is a single question mark (STX ? CR).

Reading String List Size
To return the number of items in a string list, use the following AiF escape sequence:
ESC_41; 1w control-id ESC\

Reading Selected Display Text
To return the display text for the selectedtdist, use the following AiF escape sequence:

ESC_41; 2; item w control-id ESC\
Whereitem is the number of the relevant item (starting from 1).

Reading Selected Hidden Text
To return the hidden text for the selectgidtem, use the following AiF escape sequence:

ESC_41; 3; item w control-id ESC\
Whereitem is the number of the relevant item (starting from 1).

Developer’s Guide 47

CHAPTER 2 AIF TOOLKIT

Clearing a String List
To delete all entries in a string list, use the fotiowF escape sequence:

ESC_42; 1w control-id ESC\
Wherecontrol-id is the control id for the string list.

Setting Special Characters
To set hidden text separator and indirect entry characters, use theyféilewscape sequence:

ESC_42; 2 w control -id ; string ESC \
Wherestring is a 2character string holding these characters in order.

For example, to set the default special characters (, @) in the string listrimgyhadse the
following AiF escapgequence:

ESC_42; 2w stringl ; ,@ ESC \
Note:

To include semicolons within strings, put a pipe character in front of the semicolon, e.g.
ESC_40 w TEST; ; This is a semicolon [; in the text ; this is item 2 in the list ESC \

438 Developer’s Guide

AIF TOOLKIT CHAPTER 2

Combo Boxes

The following sections describe how to create, read and manipulate combo boxes: A combo box

can combine an edit box with a dopon string list (see example on [&pe

Creating a Combo Box
To creat a combo box, use the following AiF escape sequence:

ESC _45;y; x; h;wid {; vis} {; en} {; font} {; box} {; sort} {; bar} {; msg} {; auto} {; border} w c-id
{; str-id} {; sel} ESC\

Where:
y
X
h
wid
vis
en

font

box

sort

bar

msg

y coordinate of top of box.

x coordinate of left of bax

Height of box, in rows.

Width of box, in columns.

1 = create hidden, 2* = create visible(*).

1 = initially disabled, 2* = initially enabled.
Text font:

1* = Terminal.

2 = System.

3 = 10pt Helvetica.
4 = 8pt Helvetica.

2 = simple combo box.

3 =dropdown combo box.

4 =dropdown list combo box.

5 = simple combo box borderless.

6 =dropdown combo box, borderless.

7 = dropdown list combo box, borderless.

1 = unsorted. The list items appear in the same order astiinpést.
2* = sorted. The list items will appear in alphabetical order.

1 = no scroll bar, even if items too wide for box, 2* = use scroll bar, if neede(

1*= messages sent between hostarsiAccessvill use display text.
2 = messages sent between hosHaistiAccessvill use hidden text.

msg selects whether the host wishes to use the display text or hidden text of
list entries when communicating withstAccesand affects messages sent in b
directions. Stid ard sel will be interpreted as display or hidden text depending
this value. It also affects subsequent event reporting (selection change and «
click events), and the way items are specified and transmitted in other escay
sequences.

Developer’s Guide 49

CHAPTER 2 AIF TOOLKIT

auto 1 = no autonatic horizontal scroll in edit box of combo box.
2* = automatic horizontal scroll in edit box of combo box.

border 1 =no border. The control uses the full depth of the cgntaaitangle, probably
displaying a partial item at the bottom.
2* = normal lorder, only show integral no. of items.

c-id Control id of combo box.
str-id String list id, optional. If not given, list will initially be empty.

sel Display/hidden text of item to be initially seleetggtional. If not given, the first
displayed ent in the list/combo box will be initially selected.

Combo Box example
This example creates a string list with contsit-icst. It then creates:

A 5x10 simple combo boxombol) at (10,10).
A 7x12 dropdown combo bozombo?2) at (10,25).
Aa 5x10 drofglown list combo boxc¢mbo3) at (10,40).

All the boxes usstr-list for their contents. Note thabmbolhas changed background colour. See
page22for details of this feature.

> >» >

ESC_40 w str-list;;line1 ;line 2;line 3;line4; line5ESC \
ESC 45;10;10;5; 10;;;; 2w combol ; str-list ESC\
ESC_14;1; 8w combol ESC\

ESC 45;10;25;7;12;;;; 3w combo?2 ; str-list ESC\

ESC 45;10;40;5; 10;;;; 4w combo3; str-list ESC\

50 Developer’s Guide

AIF TOOLKIT CHAPTER 2

Reading Combo Boxes

You can read from a combo box, using the escape sequence described in the following sections to
return a value to the host.

In all cases, a value will be sent to the host. This is formatted as:

<STX><value> <CR>
If anerror is detected in the arguments, the value returned is a single question mark (STX ? CR).

Reading the Current Item in a Combo Box
To return the contents of the currently selected item, use the following AéFseqoepce:

ESC_46; 1w control-id ESC\

The contents consists of either the display or hidden text for the selected item, depending on the
value of thensg parameter when the combo box was created. Sefpage

If hidden text iseturned, but was not defined for the selected entry, the position of the item in the
string list is returned. This may not be the position of the selected item as displayed. If the box was
created with alphabetic sorting turned on, the order of preseirtdtie combo box is quite

separate from the order in the string list. The value that is returned will always be the order in the
string list.

If no item is selected, the value returned is a single question mark (STX ? CR).

Reading if a Combo box is Visible

To return whether or not the list portion of a combo bgk@pped dowp(i.e. visible), use the
following AiF escape sequence:

ESC_46 ; 3w control-id ESC\
The value returned is 1 if it is not visibléjtds.

Reading Changes to Combo Boxes

To read if the contents of the box have been changed by the user, use the following AiF escape
sequence:

ESC_46 ; 4 w control-id ESC\
The value returned is 1 if unchanged, lzaifiged.

This applies to simple or dropdown combo box styles only (not dropdown list).

Reading the Contents of a Box
To read the contents of a box, use the following AiF escape sequence:

ESC _46; 5 {; length} w control-id ESC\
Where:

Length The maximum length that is to be returned. (*=80).

This applies to simple or dropdown combo box styles only (not dropdown list).

Developer’s Guide 51

CHAPTER 2 AIF TOOLKIT

The contents of the box are returned.

Reading Selected Characters

To return edit box selectigmdication (telling the host which characters are selected), use the
following AiF escape sequence:

ESC_46; 6 w control-id ESC\
The value returned is two comsasgarated integersv, where:

n The number of the first character in the selection (stadimndLj.
w The number of selected characters.
If nothing is selected, the return valyg,& .

This applies to simple or dropdown combo box styles only (not dropdown list).

Setting the Current Item in a Combo Box
To set an item to be selected, use the following AiF escape sequence:

ESC_47; 1w control-id ; item ESC\
Where:

item Display/hidden text of the required items.

The items are specified as display/hidden teleotquired items, depending on the value passed
in themsg parameter when the combo box was created.

See pagé9for details.

Changing the String List to be Displayed in a Box
To change the string list that is to be displayed in the box, use the following AiF escape sequence:

ESC_47; 2 w control-id ; string-id ESC\
Wherestring-id is the (optional) string list id. If omitted, the box becomes empty.

Limiting Text in Combo Boxes

To limit the amount of text that may be entered, for simple or dropdown combo box styles only,
use the following AiF escape sequence:

ESC_47; 3; limit w control-id ESC\
Wheredlimit is the limit.

Setting the Edit Box Selection Range

To set the edit box selection range, for simple or dropdown combo box styles only, use the
following AiF escape sequence:

ESC_47; 4; start ; length w control-id ESC\
Where:

52 Developer’s Guide

AIF TOOLKIT CHAPTER 2

Start The positior(starting from 1) of the first character to be selected.

Length The number of characters that are to be selected.

Developer’s Guide 53

CHAPTER 2 AIF TOOLKIT

Hiding and Showing Combo Boxes

To dropdown (show) or close up (hide) the list box part afdho box, for simple or
dropdown combo box styles only, use the following AiF escape sequence:

ESC_47; 5 {; show} w control-id ESC\
Where:

show 1 = hide.
2* = show.

Using the Clipboard (combo box styles)
For simple or dropdown comibox styles only, you can use the clipboard facilities as follows:
To cut the selection in the box to the clipboard, use the following AiF escape sequence:

ESC_47; 6 w control-id ESC\
To copy the selection in the box to the clipboard, use the followiagcaipe sequence:

ESC_47; 7w control-id ESC\
To paste the clipboard contents into the box at the current insertion point, use the following AiF
escape sequence:

ESC_47; 8w control-id ESC\
This is ignored if the clipboard does not contain text.

To cleatthe current selection in the box (deleting it without placing it in the clipboard.), use the
following AiF escape sequence:

ESC_47; 9w control-id ESC\

54 Developer’s Guide

AIF TOOLKIT CHAPTER 2

List Boxes

The following sections describe how to create both ordinary and imatéstdoxes, how to read
from and manipulate a list box.

Creating list boxes
To create a list box, use the following AiF escape sequence:

ESC_45;y; x; h;wid {; vis} {; en} {; font} {; box} {; sort} {; bar} {; msg} {; auto} {; border}
{; size} {; style} w id {; str-id} {; sel} {; top} ESC\

Where:

y y coordinate of top of box.

X x coordinate of left of box.

h Height of box, in rows.

wid Width of box, in columns.

vis 1 = create hidden, 2* = create visible.

en 1 =initially disabled, 2* = initially enabled.

font Text font: 1* = terminal, 2 = system, 3 = 10pt Helvetica, 4 = 8pt
Helvetica.

box * = list box, possibly incremental, see paf@r details.
8 = tabular list box. This is a lisix supporting tab characters, allow
you to input data in columns, see f@Eger an example.

sort 1 = unsorted. The list items appear in the same order as in the st
list.
2* = sorted. The list items will appear in dptieal order.

bar 1 = no horizontal scroll bar, even if items too wide for box.
2* = use horizontal scroll bar, if items too wide for box.

msg 1* = messages sent between hoststiAccessvill use display text.
2 = messages sent between hostastiAccessvill use hidden text.
msg selects whether the host wishes to use display or hidden tex

auto 1 = no auto horizontal scroll in edit box of combo box.

2* = auto horizontal scroll in edit box of combo box.

Developer’s Guide 55

CHAPTER 2 AIF TOOLKIT

border 1 = no border, list will tryptuse whole of control rectangle.
2* = normal border, only show integral no. of items.
3 = 3D Sculpted list type.

size Sets the number of elements the list box will hold. For use with
incremental list boxes. This must be at least one more than the n
of elements.

style 0 = * standard incremental. Registers an event if a user pages of

bottom of the list box.

1 = extended incremental style. Registers events if the following
1: paging off the bottom of the list box.
-1: Paging off the topf the list box.

id Control id of list box.

str-id String list id, optional. If not given, list will initially be empty.

sel Display/hidden text of item to be initially seleetgtional. If not
given, the first displayed entry in the list/comboviithbe initially
selected.

top Display/hidden text of item to be initially shown at the top of the-t
optional. By default, the initially selected item is placed top most |
possible.

Incremental List Boxes

You can use it feature to create list boxes with room for many entries, and create a corresponding
string list with only a few strings.

This feature is useful if data transmission is slow, allowing you to update the list box incrementally
as the user scrolls downwards

You can getlostAcces$o send notification messages to the host, whenever the user scrolls off the
bottom of the visible strings, and so reveal an undefined entry. To do this, you need to enable event
number 13.

This notification takes the format:

<STX>13,<element number>,<number of elements><CR>

If the host defines a string list which is larger than the total elements set then the total elements
becomes the number of strings in the string list.

When the notification is received, the host should rebyaadting the required string to the end
of the string list associated with the list box.

56 Developer’s Guide

AIF TOOLKIT CHAPTER 2

See page3for a description of enabling event numbers.
See pagé5 for a description of adding a string girang list.
Note: sorting is automatically disabled for incremental list boxes.

Example: Incremental List Boxes

The host creates a list box with 100 entries, containing the entries in a string kst agmed
which contains only 10 strings.

The listbox will display the 10 given strings and the remaining 90 will be empty.
The user may scroll down to reveal element 11 which is not atkstlecesghen sends
<STX>13,11,1<CR>

to the host. The hos wi | I tlhen troe stpheen de nbdy odd d
list (after “Line 10”) associated with the I|is
ESC_40 w fill-up ; Line 10 ; Line 11 ESC\

The text “Line 11" wil!/l then be displayed in t

Example 2: Incremental List Box

The following example creates a string list natnést, containing the data described, then
creates a simple |Iist box, andC’a dyamhudlari 4 iwgec
here to denote a tab character.

ESC_40; 1w str-list ;; 012345678901234567890123456789012345 ; NameC C Dept.C Ext. ;

EddyC Stabilo€ € Graphics€ 20 ; DavidC BaileyC DevelopmentC 29 ;

CynthiaC KadogoC LegalC 42 ; JohnC MerrellsC DevelopmentC 40 ;
StoremanC NormanC StoresC 45 ESC\

ESC 45;1;1;4;20;;; 3; 1w listboxl; str-list ESC\
ESC_45;10;1;7;40;;;; 8; 1w listbox2 ; str-list ESC\
ESC 47;11;10; 20; 32; 40; 50 w listbox2 ESC\

ESC 14 ; 16; 4 w listbox2 ESC\

Developer’s Guide 57

CHAPTER 2 AIF TOOLKIT

Note that the first box has a different font (8 point Helvetica) and backgstmurd ¢

Reading from a List Box

You can read from a list box, using the AiF escape sequence described in the following sections to
return a value to the host. This return value is formatted as:

<STX> value <CR>
If an error is deteetl in the arguments, the value returned is a single question mark (STX ? CR).

Reading the Current Item

To return the display or hidden text of the currently selected item, use the following AiF escape
sequence:

ESC_46; 1 w control-id ESC\

The text returned depends on the value passedmsdgiEarameter when the list box was created.
See page2for details.

If no hidden text was specified for the selected entry, the position of the item in the string list is
retuned.

Note: this may not be the position of the selected item as displayed. If the box was created with
alphabetic sorting turned on, the order of presentation in the list box is quite separate from the
order in the string list. The value that is retunikkdlways be the order in the string list.

If no item is selected, is returned.

Reading the Top Item
To return the display or hidden text of the top visible item, use the following AiF escape sequence:
ESC_46; 2w control-id ESC\

58 Developer’s Guide

AIF TOOLKIT CHAPTER 2

Reading Total Size
To return the total number of elements defined, use the following AiF escape sequence:
ESC_46; 7 w control-id ESC\

Developer’s Guide 59

CHAPTER 2 AIF TOOLKIT

Manipulating a List Box

The following areas are described:

>

Setting the current item.
Changing the string list be displayed.
Converting to incremental style.

> >

Setting the Current Item

To set an item to be selected, and optionally also to be the topmost visible item, use the following
AiF escape sequence:

ESC_47; 1w control-id ; item ESC\
Where:
item Display/hidden text of the required items.

The items are specified as display/hidden text of the required items, depending on the value passed
in themsg parameter when the list box was created

See page5for details.

Changing the String List to be Displayed

To change the string list that is to be displayed in the box, use the following AiF escape sequence:
ESC_47; 2 w control-id ; string-id ESC\

Wherestring-id is the (optional) string list id. If omitted, the box becomeyempt

Converting to Incremental Style

To convert a noincremental style list box into an incremental style list box, and set the total
number of elements, use the following AiF escape sequence:

ESC_47; 10 {; elements} w control-id ESC\
Where:

elements The btal number of elements in the box.

If the list box is already of incremental style then the total number of elements will be set to the new
value. The total number of elements is always greater than or equal to the number of strings in the
associatestring listThis will fail if the list box is sorted.

60 Developer’s Guide

AIF TOOLKIT CHAPTER 2

Setting Tabs

If you have created a tabular list box, you can set one or more tab stops for that box. To set tab
stops, use the following AiF escape sequence:

ESC_47; 11; widthl... w control-id ESC\

Where:
widthl ... Width of tab stops (in characters). To set all the tab stops to be the same
send only one value. To set a list of tab stops send a tab position value f
tab stop.

control-id Control id of theabular list box.

By default the tab stops are set to be half a system character width. The values must be sorted in
increasing order.

Note: Backtabs are not supported.

Developer’s Guide 61

CHAPTER 2 AIF TOOLKIT

Edit Boxes

The following sections describe how to create, readanipulate an edit box.

Creating an Edit Box
To create an edit box, use the following AiF escape sequence:

ESC_50;y; x; h; wid{; vis} {; en} {; font} {; display} {; auto} {; acc} {; focus} {; edit} {; border}
{; scroll} ins/ovr w control-id {; contents} ESC\

Where:
y y ccordinate of top of box.
X x coordinate of left of box.
h Height of box, in rows.
wid Width of box, in columns.
vis 1 = create hidden, 2* = create visible.
en 1 = initially disabled, 2* = initiakiyabled.
font Selects font: 1* = terminal, 2 = system, 3 = 10pt Helvetica, 4 = 8pt
Helvetica.
display 1* = display contents normally.
2 = force contents to upper case.
3 = force contents to lower case.
4 = jpassworg contents displayed as asterisks.
(The password character may be switched from asterisk to something
auto 1 = do not automatically (horizontally) scroll the box.
2* = automatically (horizontally) scroll the box.
acc * = read/write access.
2 = read only accessiser cannot changentents.
focus 1* = initially, contents not selected when box receives focus.
2 = initially, contents selected when box receives focus.
edit 1 = single line edit (* if height is 1).
2 = multiline edit (* if height >1).
3 = multiline edit with auto vecal scrolling.
border 1 = no border. The edit box height is exactly the multiple of character

given.

2* = border. The box extends 4 pixels above and below the normal bc
rectangle This means that you cannot have two consecutive edit boxe
two consecutive lines.

3= 3D border.

62 Developer’s Guide

AIF TOOLKIT CHAPTER 2

ins/ovr 1= disable.
2=ins/ovr enabled.

scroll 1* = no scroll bars.
2 = horizontal scroll bar.
3 = vertical scroll bar.
4 = horizontal & vertical scroll bars.

control-id ~ Control id.
contents Initial contents of boxoptional.

The height of the box that you pass relates to the height in character cells of the contrad, and
the number of lines of text the control will hold.

Creating an edit box example
This example creates a 3x10 edit box at (12,&0i, Mith a test string and scroll bar.

text

«[-+

Developer’s Guide 63

CHAPTER 2 AIF TOOLKIT

Reading From an Edit Box

To read a value from an edit box, use the AiF escape sequences as described in the following
sections.

In al cases, a value will be sent to the host. This return value is formatted as:

<STX><value> <CR>
If an error is detected in the arguments, the value returned is a single question mark (STX ? CR).

Reading a Line in an Edit Box
To read the contents ofyjaven line in the box, use the following AiF escape sequence:

ESC _51; 1; max-len ; line w control-id ESC\
Where:

max-len Is the maximum length of the text returned. (*=80).

Remember to setax-len when reading a multiline control, since their conte
will often exceed 80 characters.

line Is the number (starting from 1) of the line you want. (*=all lines).

For single line editéne is ignored, and the whole contents of the single line
returred, followed by CR.

For multi line edits, line is given (and is greater than zero), then the conte
the specified line, only, are returned in the same format as for a single lint

If line is not given (or is given as 0), all lines in the@dvill be returned. Eac
line will be separated from the next by CR. Preceding the lines is the line

For example, if a multhe edit contains 2 lingeellg anditherg, the reply
would look like this:

2,hello<cr>there<cr>
For example, to return the contents of line 3 of editdupuse:

ESC_51;1;; 3w edESC\
80 characters at most will be returned.

64 Developer’s Guide

AIF TOOLKIT CHAPTER 2

Examining Details of Lines

To read the numdy of lines in a box (alway$or single line edit), use the following és€ape
sequence:

ESC _51; 2; w control-id ESC\
To read the current length of a given line, use the following AiF escape sequence:

ESC _51; 3 {; line} w control-id ESC\
Where:

line The relevant line number (*=1).

To read the line number of the fivigtible line in the box (for mdlithe edits only), use the
following AiF escape sequence:

ESC _51; 4; w control-id ESC\

Detecting Changes in an Edit Box
To return a flag that says if the edit box contents have been changed by the user.

ESC 51 ; 5 {; reset} w control-id ESC\
Where:

reset 0* = do not reset changed flag.
1 =reset changed flag.

The value returnedif if no change, g2j if changed.

Telling the Host Which Characters are Selected

To return a selection indicatiotelling the host whiatharacters are selected (for single line edits),
use the following AiF escape sequence:

ESC_51; 6; line w control-id ESC\
The value returned is two comssgarated integersv, where:

n The number of the first character in the selection (starting from1

w The number of selected characters.

If nothing is selected, the return valyg,& .

Developer’s Guide 65

CHAPTER 2 AIF TOOLKIT

Manipulating an Edit Box
To manipulate an edit box, use the following AiF escape sequence features.

> > I>» > I>» I>»

A

Setting contents in an edit box.

Limiting text entered.

Scrolling.

Changing ‘Password’ Character.
Setting Selection Range.

Using the Clipboard.

Initialising a Muliine Edit Box.

There is no reply to this escape sequence.

Setting Contents in an Edit Box
To set the contents of an edikbase the following AiF escape sequence:

ESC_52; 1w control-id ; contents ESC\
Where:

contents The new contents of the edit box.

Limiting Text Entered

To limit the amount of text that may be entered into the box, use the following AiF escape
sequence:

ESC_52; 2; limit w control-id ESC\
Where:

limit The maximum number of characters. This is a total limit, not just the limit on ¢

line (multiline edit box users take note).

Scrolling

To scroll an edit box so that that the given line number fisghvisible line (for multi line edits
only), use the following AiF escape sequence:

ESC_52; 3; line w control-id ESC\
Where

line The relevant line number.

66

Developer’s Guide

AIF TOOLKIT CHAPTER 2

Changing “Password” Character

Tochange he “password” character, use the fol
ESC _52; 4; w control-id ; char ESC\
Where:

char The password character.

Setting Selection Range

To set the selection range (for single lindexés only), use the following AiF escape sequence:

ESC 52 ; 5; start ; len w control-id ESC\
Where:

start The location (starting from 1) of the first character to be selected.
len The number of characters that are to be selected.

Using the Clipboard
You can use the clipboard facilities as described:
To cut the selection in the edit box to the clipboard, use the following AiF escape sequence:

ESC _52; 6 w control-id ESC\
To copy the selection in the edit boxh® clipboard, use the following AiF escape sequence:

ESC _52; 7w control-id ESC\

To paste the clipboard contents into the edit box at the current insertion point, use the following

AiF escape sequence:

ESC_52 ; 8 w control-id ESC\
This is ignored if thelipboard does not contain text.

owi

To clear the current selection in the edit box (i.e., deletes it without placing it in the clipboard.), use

the following AiF escape sequence:
ESC_52; 9w control-id ESC\

Developer’s Guide 67

n

CHAPTER 2 AIF TOOLKIT

Initialising a Multi-line Edit Box

To initialise a multine edit box with the contents of the named string list, use the following AiF
escape sequence:

ESC_52; 10 w control-id; string ESC\
Where:

string The string list id.

68 Developer’s Guide

AIF TOOLKIT CHAPTER 2

Validated Edit Boxes

Validated edit boxes are sidijle edit boxes that may only contain information of a specific type,
and arevalidated so that they only contain information of that specific type:

>

An integer.
A date.
A Anamount of money.

Once you have defined the type of information that the edit box contains, the contents of the edit
box must always conform to the format you have specified. The contents can only be changed to
valid formats.

p=

For example, if you createadidated edit box for an integer, then that box only accepts valid
integers as input. All other inputs will be ignored (sounding a beep).

Creating Validated Edit Boxes
To create a validated edit box, you need to:

1. Createa normal edit box, defining its size to be consistent with the data it contain. For
example, if you want a validated edit box to contain an integer between 100 and 999, you
should create the edit box to be 1 character high and 3 characters wide.

2. Attach avalidation to it, defining the allowed contents of that edit box. You can attach
integer validations, date validations or currency validations, depending on the type of data
required. These validations are described in the following sections.
Validated eittboxes only allow single inputs, on single lines: one date, one number, or one sum of
money. If you create a miliitie edit box, then attach a validation to it, the edit box will only allow
inputs on the top line. If the initial contents of the edidiooxot conform to this format, they are
removed. If you destroy an edit box, the associated validation is also destroyed. You can change the
validated edit box by attaching a new validation.

Integer Validations

To attach an integer validation to an edit box (defining that box to contain only integers), use the
following AiF escape sequence:

ESC _70; 1 {; low ; high} w control-id ESC\

Where:
low Minimum allowed value for integers.
high Maximum allowed valdier integers. Must be higher than low.

control-id Control id of edit box.

Developer’s Guide 69

CHAPTER 2 AIF TOOLKIT

Note: if you specify lmw parameter, you must also specifigh parameter.

If low andhigh are both zero, or are not specified, then there are no limits to the integer.
Example

To create an edit box callEdp-nos, use the following AiF escape sequence:

ESC 50;10; 10;1; 2w emp-nos ; 17 ESC\
To then attach a validation to that box, such that the box only contains valid integers between the
values of 1 and 32, use theofsihg AiF escape sequence:

ESC _70;1;1; 32w emp-nos ESC\

Date Validations
To attach a date validation to an edit box, use the following AiF escape sequence:

ESC_70; 2 {; format} w control-id ESC\
Where:

format The format of the date information:

1 = long date format (for example, Monday, 20 169&).

2 = short date format (for example, 20/06/95).

3* = Abbreviated date (for example, 20/@@faults to current year).
control-id Control id of edit box.

The format for dates is defined by Windows. To change this, totethational program within
Windows Control Panel.

The host always stores dates in the following format:

dd/mm/lyyyy
irrespective of the uggnational settings. This increag®agplicity over national borders.

Special Date Strings

When displaying date information, you can pass a number of special strings that relate to the current
date:

yesterday

today

tomorrow

next <monday/tuesday/wednesday/thursday/friday/saturday/sunday>
last <monday/tuesday/wednesday/thursday/friday/saturday/sunday>

These strings are not casasitive.

Changing the date
You can use the following keggses to change the date within an edit box:
Up Arrow Add a day to the date.

70 Developer’s Guide

AIF TOOLKIT CHAPTER 2

Down Arrow Subtract a day from the date.

PageUp Add a month to the date.

PageDown Subtract a month from the date.

Home Set the date to today (the current date).

When altering the month, the day of month is adjusted within the bounds of the month. For
example, adding a month3t/01gives28/02.

Note: when within a datealidated edit box, you cannot use the PageUp and PageDown keys to
scroll back/forward througthe current sessignterminal backpages.

Edit Examples

To display an edit box callgalyday, containing the date for the next Friday from the current date,
use the following AiF escape sequence:

ESC 50;5;5; 3; 10w payday ; next friday ESC\

To check that the date information in an edit box aidkeds valid, use the following AiF escape
sequence:

ESC_70; 2w date ESC\

Developer’s Guide 71

CHAPTER 2 AIF TOOLKIT

Currency Validations
To attach a currency validation to an edit box, use the following AiF escape sequence:

ESC_70; 3w control-id {; format} ESC\
Where:

control-id Control id of edit box.
format The currency formatsee Defining Currency Format below.

The default currencyrfoat is defined by Windows. To alter this, rumntieenational program
within Windows Control Panel.

Defining Currency Format

You can use tHermat parameter to define a currency format. This format consists of a series of
specibcharacters based on the Visual Basic formatting commands, as follows:

Symbol Meaning
! Display currency symbol.

Display zero or more digits if before a decimal point.
Display up to 1 digit if after the decimal point.

0 Display one or more digits; @rfor leading and trailing zeros.
Display a decimal point.
, Allow the triad separator between triples of digits.

% Percentage display (hnumber is multiplied by 100, and suffixed with a ¢
This cannot be used with theymbol.

- F o r c-&symbol before negative numbers (the default).
+ Force a “+” symbols before posi
0 Enclose negative numbers in parentheses.

0 st r i Allowliteral string. This is collected into one complete string, placed at
end of the currency striigf or exampl e “ Gross”,

72 Developer’s Guide

AIF TOOLKIT

Currency Examples

CHAPTER 2

To format a currency displayed as a currency symbol, followed by zero or more digits, then a
decimal point, then a trailing zero or one digit, use the following string:

1#.0

So to attach a currenaglidation in this format, use the following AiF escape sequence:

ESC_70; 3w edit ; 1#.0 ESC/
The following table shows how particular sums can be represented:

Sum Format

14 # (#.00) o
1.2 1 £1.2 1.20 pounds
12.52 13 £12.5 12.52 pounds
23532 | -24 -£23.5 (23.53) pounds

Note: Blank edit boxes are always displayed as empty, despite any formatting to the contrary.

Developer’s Guide

73

CHAPTER 2

Static Labels

You use a static label as a means of getting proportional text on the screen.

AIF TOOLKIT

To create a static label of a given size, use the following AiF escape sequence:

ESC 53;y; x; h;wid {; vis} {; en} {; font} {; pos} {; bord} w control-id {; text} {; face} ESC\

Where:

y
X

h
wid
vis

en

font

pos

bord

control-id

text

face

74

Y coordinate of top of label.
X co-ordinate of left ofabel.
Height of label, in rows.
Width of label, in columns.
1 = create hidden.

2* = create visible.

1 = initially disabled.

2* = initially enabled.

Font: 1* = Terminal.

2 = System.

3 = 10pt Helvetica.

4 = 8pt Helvetica.

5 = Fontface name (see face).

1 = left aligned.2 = right aligned.

3* = centred.

1* = no border.

2 = border.

Control id.

Text to be displayed.

Font face name

(only

f

font =

Developer’s Guide

AIF TOOLKIT CHAPTER 2

Changing the Windows pointer

It is now possible to change the Windows pointer (cursor) style via the AiF, although this will only
apply to the terminal window. Any GUI controls will over ride this style while the pointer is over
the ara.

Use the following AiF sequence:

ESC_56 ; arrow w ESC \
Where:

Arrow
0 Restore Standard Pointer.
1 Arrow.

2 Wait.

3 Cross.

4 | Beam.

5 lcon.

6 Up arrow.
10 Size.

11 Size NESW.
12 Size NS.

13 Size NWSE.
14 Size WE.

Creating a Modal Message Box

A modal message box is a dialog box with almelthessage, a caption, optionally a bitmap to the
left of the message, and one of a variety of standard button combinations. aorareale
message box use:

ESC_91; style; y; x; rtn w caption ; message ; spec ; help ; context ESC\
Where:

style Button Style. The buttons set as default (i.e. those that respond when the [
key is pressed) are marked with an asterisk.

1. OK + canck*).
3: OK(*) + cancel.
5: yes + no + cancel(*).

7: yes(*) + no + cancel.

Developer’s Guide 75

CHAPTER 2

rtn

caption
message

spec

9: yes + no(*) + cancel.

11*: OK.

13: yes(*) + no.

15: yes + no(*).

Y co-ordinate of message box.

X co-ordinate of message box.

*1 -send response on button click.
2-donot send response.

Caption (title).

Message itself. Separate each paragraph with a CR.

Decoration button spec. See pg@édor further information.

AIF TOOLKIT

Note: Previous options of this function are still suigabbut should be changed to reflect the
revised options as above.

Positioning the Box

If x andy are present, and greater than zero, the message box is positioned so the top left of the
box coincides with the scrg@rel ceordinate of the top left pixel of the identified character cell in

the terminal window. If this forces part of the message box off screen, it is moved if possible to get
the whole box on screen.

If eitherx ory are 0 or omitted, the message box will be centred on the terminal window.

76

Developer’s Guide

AIF TOOLKIT CHAPTER 2

Returning Values to the Host
The result is returned to the host as

<STX> n <CR>
Where:

n 1=ino'.
2 = jyesor jOKj

3 = jcancg| escape pressed, or msg box closed.

Returming Values to the Host Example

To create a Modal message box at 10,10, with a title, 1 line of text, and Yes/No/Cancel/Help
buttons, use:

ESC_91; 6; 10; 10 w MBox Test ; Click any button - Cancel has focus ESC\

Developer’s Guide 77

CHAPTER 2 AIF TOOLKIT

Status Bar

You can use AiF sequences to modify the status bar for your application:

p=

Hiding/showing the status line.

Displaying your own text messages.

Dividing the status line into panes, and setting the conteatshabane.
The following sections describe how to use these functions.

> >

Hiding/Showing the Status Line
To hide/show the status line, use the following AiF escape sequence:

ESC _92; 3; {show} w ESC\
Where:

show 1 = hide stais line.
2* = show status line.

Hiding the status line will increase the area available for the terminal window display.

Setting Status Line Text
To set the main text of the status line, use the following AiF ssqgapace:

ESC_92; 1; {timeout} w text ESC\
Where:

timeout Number of seconds message is to remain on screen.
(*=no timeout- message remains until the next message is sent).

text The text of the status line.
For example, to séetdptheéoteéekne SPaess Finkoruse:
ESC_92; 1w Press F1 for help ESC\

Setting Status Line Pane Contents
To set the contents of one or more panes, use the following AiF escape sequence:

ESC_92; 2; pane; contents ; w ESC\
Where:

pane Pane number (1, 2 or 3).

78 Developer’s Guide

AIF TOOLKIT

contents Pane contents:
1 = empty pane.
2 = num. Lock status.
3 = caps lock status.
4 = time (hh:mm format).
5 = date (demmmmyy format).

6 = cursor position (row:column format).

To set multiple panes in one escape, repeat pairs of integer arguments.

Setting Status Line Pane Example
To set 3 panes as follows:
1 = cursor position.
2 = num lock status.
3 = empty.
Use the following AiF escape sequence:
ESC 92;2;1;6;2;2;3;1wESC\

Developer’s Guide

CHAPTER 2

79

CHAPTER 2 AIF TOOLKIT

Commands for menus, toolboxes and toolbars

Commands are controls associated with menus, toolboxes or toolbars. Commands can be associated
with text (for use in menus), or whtlitton images (for use in toolbars and toolboxes).You must

create commands to put in toolbars, boxes and menus before you create the toolbars, boxes and
menus.

Once a command has been created, you make it visible to the user by adgtogintnal
cortainef object, such as a toolbar, and then make the toolbar visible.

Note: Commands in use in menus should not be used to load application menus as these will not
work.

Creating Commands
To create or add a command definition, hiséallowing AiF escape sequence:

ESC _33; 5; type {; help} w c-id {; menu} {; spec} {; stat} {; wfile} {; wcont} {; r-id} ESC\
Where:

type Command type (only relevant for toolboxes and toolbars) and initial state:
1 = pushbuttortype command, disabled.
2 = pushbuttortype command, enabled.
3 = check boxtype command, unchecked, disabled.
4 = check boxtype command, unchecked, enabled.
5 = check bostype command, checked, disabled.
6 = check boxtype command, checked, enabled.
7 = check boxtype commandndeterminate, disabled.
8 = check bostype command, indeterminate, enabled.

help WinHelp command. See p&@dor details of invoking Windows help.
c-id Id for new command.
menu Menu text. i.e., the text to be used wherctimsnand is added to a menu.

spec Image specification when this command is used in a floating toolbox or toolk
same image is used for toolboxes and toolbars. The images for all button st¢
(enabled, checked etc.) is automatically computed.

See Appndix A, Describing Images for details on specifying an image.

stat Status line prompt. This text will be displayed in the status line when the use
the command (e.g., by holding down a button in a toolbox).

wfile WinHelp filename used whemiser requests help for this command.

80 Developer’s Guide

AIF TOOLKIT CHAPTER 2

wcont WinHelp context.
r-id Radio command group id.

Changing Command Type and State
To change a command type and state, use the following AiF escape sequence:

ESC_33; 6 ; type w c-id ESC\
Where:

type New command type and state. Values a8 ds for creating commands, see pe
80for details.

c-id Command id.

All toolboxes and toolbars that currently show the command are redrawn to reflect the new state.

Reading a Command
To read the current type and state for a given command, use the following AiF escape sequence:

ESC _33; 7w c-id ESC\
Where:

c-id The command id.
The format of the value returned is as follows:
<STX> state<CR>
Where:

state The current state (1..8).

Developer’s Guide 81

CHAPTER 2 AIF TOOLKIT

Setting Command Images in Toolbars/Toolboxes

To explicitly set the images to be used to show commands in toolboxes and toolbars, use the
following AiF escape sequence:

ESC_33; 8w c-id ; norm ; dis ; check ; indet ; norm2 ; dis2 ; check2 ; indet2 ESC\
Where:

c-id Command id.

norm Image spec for toolbgnormaj .

dis Image spec for toolbgdjsabled .
check Image spec for toolbgchecked .
indet Image spec for toolbgindeterminate .
norm2 Image spec for toolboxiormal .
dis2 Image spec for toolboxdisableg .

check2 |mage spec for toolboxcheckeq .
indet2 Image spec for toolbojndeterminate .

This allows different images to be used for toolbatealbdxes, and/or different images for the
different command states.

This should be done before adding the command to a toolbox/toolbar. It should not be used to
dynamically change the button once visible.

Adding a New Command Group
To add a new command group, use the following AiF escape sequence:

ESC_33; 9w group-id ESC\
Where:

group-id The command group id.

82 Developer’s Guide

AIF TOOLKIT CHAPTER 2

New Command Group Example
The following shows a toolbox containing eight buttons (commiaralskight possible states.

All the commands use the same bitmap image. The toolbox does not have focus, and has a
minimise box attached. The code is implemented using the following sequences

ESC 33;1;10; 10;;; 2w tbox ; Sample ; c:\windress\tiger.ico ESC\
ESC_33;5; 1w tcoml;; file=c:\bitmaps\tree.omp ESC\

ESC_33;5; 2w tcom2;; file=c:\bitmaps\tree.omp ESC\

(etc ...)

ESC_33; 4w thox ; tcom1 ESC\

ESC_33; 4w thox ; tcom2 ESC\

(etc ...)

ESC_33; 2w tbox ESC\

Sample

LJEJEIE]

Developer’s Guide 83

CHAPTER 2 AIF TOOLKIT

Toolbars and Toolboxes

You can use AiF escape sequences to create and use floating toolbars and toolboxes. The following
sections describe how to use these functions:

>

Creating a floating toolbox.
Hiding/showing a toolbox.

Creating a toolbar.

Addinga button to a toolbar/toolbox.

Before creating a toolbox or toolbar, you must ateatmandsto put in those toolboxes, see
page80for details of commands.

> > >

Creating a Floating Toolbox
To create a floatntoolbox, use the following AiF escape sequence:
ESC _33; 1; x; y{; mod} {; border} {; min} {; orig} w t-id {; title} {; icon} ESC\

Where:
X x coordinate of top of toolbox (see orig, below).
y y coordinate of left of toolbox (see orig, below).

mod No longer supported defaults tanodeless.
border No longer supported defaults tano border.
min No longer supported defaults talo not display a minimise box.
orig Window origin:
1 = relative to the screen, in pixels.

2 = relative to thapplication window, in pixels.
* = relative to the main terminal window, in character cells.

t-id Unique toolbox id.
title Title text for toolbox.
icon Icon file name, to be used when toolbox is minimised. Must be a .ico file.

If not given, a defauilton will be used. Only relevant if a minimise box is displayed.

Note: the toolbox will be hidden by defaylou have to show it to display the toolbox on the
screen.

Hiding/Showing a Toolbox
To hide or shova toolbox, use the following AiF escape sequence:

ESC_33; 2; {show} w control-id ESC\
Where:

show 1 = hidden.

2 = minimised.

84 Developer’s Guide

AIF TOOLKIT CHAPTER 2
3* = normal.
4 = maximised.

control-id Toolbox control id.

Creating a Toolbar

To create a toolbar, ube following AiF escape sequence:

ESC_33; 3; {bar} w control-id ESC\
Where:

bar 1* = toolbar initially empty.
2 = base toolbar on defablbostAccessoolbar.
control-id Toolbar control id.

Adding a Button to a Toolbar/Toolbox

You must create the toolbar/toolbox before you can add a button. The button command must
already exist before you create the button. You should add all commands to a toolbox/bar whilst it

is hidden, and then show it at the end. Taaduldton to a toolbox/toolbar, use the following AiF
escape sequence:

ESC_33; 4{; place} ; gap w t-id ; c-id ESC\
Where:
place Where to place new button: 1* = to right of last; 2 = start new row of buttons.

gap Gap between new button and previous butfcadding to same row, this is the
number of pixels of gap inserted to the left of the new button. When starting a
row, this is the number of pixels of gap to insert above the new button.

t-id Toolbox/toolbar id.

c-id Command id (the id of axisting command). May be an internal command.

Toolbar Button Example
The following example:

b=

Creates a floating toolbox nantleak, wi t h header text “Sample”.
Creates two commantisomlandtcom?2, and links these coramds with bitmap images.
Adds bothtcomlandtcom2to the floating toolbotbox.

A Shows the floating toolbox.
This can be coded as follows:

> >

ESC 33;1;10; 10 w thox ; Sample ESC\

ESC 33;5; 2w tcoml;; file=c:\bitmaps\tree.omp ESC\
ESC_33; 5; 2w tcom2 ;; file=c:\bitmaps\question.ompESC\
ESC_33; 4w thox ; tcom1 ESC\

Developer’s Guide 85

CHAPTER 2 AIF TOOLKIT

ESC_33; 4w thox ; tcom2 ESC\
ESC_33; 2w thox ESC\

86 Developer’s Guide

AIF TOOLKIT CHAPTER 2

Menus

You can use AiF escape sequences to create controls for VEigtiomenus on the menu bar for
your application. To use menus, you must first create @@etnodndsto place in the menus you
create, see pagefor details of commands.

Creating Menus
To create a new menu, use the following AiF escape sequence:
ESC_33; 10; {dis} w m-id ; title ; c-id1 ... ESC\

Where:
dis 1 = disabled.
2* = enabled.
m-id New menu id.
title Menu title.
c-idl... Command ids, or menu ids (see below) to be added to the menu. To add &

separator, skip a command id (i.e., 2 semicolons with nothing between).
You can use this AiF escape sequence to create hierarchical menus (that is, menus containing
menus)by including the name of a ygkefined menu as one of the command IDs.
Menu Example

To create a menu calledts, containing the commaniisld anditalic, and the sumenusize,
use the following AiF escape sequences:

ESC_33; 10 w size ; Font Sizes ; eight ; ten ; twelve ESC\
ESC_33; 10 w fonts ; Character Fonts ; bold ; italic ; size ESC\
The submenusize contains the commandgght, ten andtwelve

Displaying Menus
To place prelefined menus in the menu bar, use the followihgssiape sequence:
ESC 33; 11; c-num w c-id1 ... menu-ids ESC\

Where:
c-num Number of command IDs to be inserted on help menu.
c-idl ... Command IDs to be added to help menu.

menu-ids IDs of menus to be installed in menu bar.

The host menus will ieserted to the left of the Help menu, but left aligned (that is to the right of
all the inbuilt notfnelp menus).

You can also give command IDs to be added to the help menu, in a separate section.

Developer’s Guide 87

CHAPTER 2 AIF TOOLKIT

Removing Menus

To remove menus frothe menu bar, pass the control IDs of the menus to be inserted in the
menu bar, in the order you want them. All host menus that are not named will be removed from the
menu bar if already there.

So to remove all host menus, use this AiF escape sequboaenaining any menus.

Enabling/Disabling Menus
To enable/disable a whole menu, use the following AiF escape sequence:

ESC_33; 12; dis w menu-id ESC\
Where:

dis 1 = disabled, 2* = enabled.

menu-id Menu id.

88 Developer’s Guide

AIF TOOLKIT CHAPTER 2

Changing Fonts

To change the font of characters displayed on your terminal, use the following AiF escape sequence:
ESC_93 {; size} w {name} ESC\

Where:
size New font size. * = current font size.
name Name of font* = current font.

For example, to switch display font to Letter Gothic 18 point, use the following AiF escape
sequence:

ESC_93; 18 w Letter Gothic ESC\
Windows automatically selects the closest available match to the font you select.

This sequence is égalent to using the Font... option of the Configure menu. If you change the
font size, this automatically switches Maintain Aspect Ratio on. If you have set Snap To Frame or,
Best Fit, changing the font size has no effect.

Developer’s Guide 89

CHAPTER 2 AIF TOOLKIT

Invoking Windows Help

To invoke Windows Help, use the following AiF escape sequence:

ESC 94 ; 1; invoke w file ; context ESC\
Where:

invoke Specifies how to invoke Windows Help:
1*= HELP_CONTEXT
2 =HELP_CONTEXTPOPUP
3 =HELP_CONTENTS
4 =HELP_KEY
5 =HELP_PARTIALKEY
6 =HELP_COMMAND
7 =HELP_HELPONHELP
8 =HELP_QUIT
file Help file name. If missing, th@stAccesselp file is used.

context Either a help context number (if invoke = 1 or 2), a help keyword or partial
keyword (if invoke =4 or 5), a help macro string (if invoke =6), or is ignored

See the Microsoft Windows Help Authoring Guide documentation for deétditdefp() and the
HELP_... functions.

90 Developer’s Guide

AIF TOOLKIT CHAPTER 2

Timed Events

To retun a natification after a set time period has elapsed, use the following AiF escape sequence:

ESC_95; delay ; t-event ; a-event w ESC\
Where:

delay The number of seconds to wait before triggering.
t-event 1 = turn timed events off.

2 = turn on one timedvent.

3 =turn on regular timed events (eving interval).
a-event 1 =turn activation events off.

2 =turn activation events on.

The return notification takes the following format:

<STX > Type <CR> 1 <CR>
Where

Type A string:
“Tl1” to sevennh al a timed
“AC” t o Hobstlcoeaslas beelm made active (gained focus).

Developer’s Guide 91

CHAPTER 2 AIF TOOLKIT

ActiveX (COM) Integration

An ActiveX object is a component program object that carusedery many application

programs within a computer or among computers in a network. The technology for creating

ActiveX objects is part of Microsoft's overall ActiveX set of technologitsf elfieh is the

Component Object Model (COM). ActiveX objects can be downloaded as small programs or

applets from Web pages, but they can also be used for any commonly needed task by an application

program in the latest Windows and Macintosh environriregeneral, ActiveX objects replace

the earlier OCX's (Object linking and embedding custo
equivalent in concept and implementation to the Java applet.

An ActiveX object can be created in any programming langaiageognizes Microsoft's
Component Object Model (COM). An ActiveX object is a component-costlined program
package that can be created and reused by many applications in the same computer or in a
distributed network. The distributed support foMCi©® called the Distributed Component Object
Model (DCOM). In implementation, an ActiveX object is a Dynamic Link Library (DLL) module.
An ActiveX object runs in what is known as a container, an application program that uses the
Component Object Model pmagn interfaces. This reusable component approach to application
development reduces development time and improves program capability and quality.

HostAcceswvill access the ActiveX objects in the same way as it has previously done for its
standard internabntrols. The host programmer prints a unique escape code that is interpreted by
HostAccesand an action is performed. These objects can be positionedHostfkeress

emulation screen at a given X & Yoodinate and scaled to a size of a hnumber afathes by

number of rows. The escape sequences used to load and manipulate these objects follow the same
standards as previous escape cod

92 Developer’s Guide

AIF TOOLKIT CHAPTER 2

Creating ActiveX (COM) Objects/Controls

There are 2 types of obj ect s tionhdeonhthddostAccdsse ‘' cr e a.
screen and those that cannot. The first tend to be GUI controls written for Visual Basic like edit

controls, radio buttons, list boxes, browser objects and the later are automation objects that provide

a programming interface tantwl applications like M&ord and MS Excel.

To create an object, use the following AiF escape sequence:

ESC 201, object, y,; x,; h,; wid, status w contrdl; prog-id ; caption ESG
Where:

object Type of Object:

0 = Automation Object

1= GUI Object

y coordinate of top of the Object.

x caordinate of left of the Object.

Height of the Object, in rows.
wid Width of the Object, in columns.
status Status of Object creation:

1= Return a status response

2* = Do not return a status response

control-id ControlID-must be unique, an
prog-id Fully qualified class name e.g. Pixel.Button
caption Text value that the object may use. Typically used w

label and edit controls.

The following response will be sent to the &pglication, if the status parameter was set to 2:
<STX> value <CR>
Where:
<STX> Is the start of text character (ASCII decimal value 0C

value Is the actual value returned. If an object is created, t
value returned is 1. If an object fails to beextethe
return value will be 0.

<CR> Is a carriage return (ASCIl decimal value 013).

Registering and Using ActiveX (COM) Objects/Controls
Make sureall ActiveX controls (6¢X exi$ andareregistered on the client machine.

Developer’s Guide 93

CHAPTER 2 AIF TOOLKIT

To begirregistration of aActiveX control, pen a command prompt.

NOTE: If you are on a Windows 7 or higher operating system¥Dis enabled,
start the command prompt using "Run as Administrator" to use regsvr32.exe correctly.

To register théctiveXcontrol ona 32bit (x86 system
1 move <name of controlecx to C: Windows system32
OR

move <name of control>.ocx to\@YINNT\ system32

thencall<exe path*regsvr32.exeocx path <name of control>ocxfrom the
command prompt

f
f

To registethe ActiveXcontrol ona 64bit (x64 system

1 move<name of control>ocx to C: Windows$ syswOwWe64
OR

move <name of control>.ocx to\@VINNT\ syswOW64
thencall<exe path*regsvr32.exeocx path3 <name of control>ocxfrom the
command prompt.

f
f

NOTE: <exe or ocypatts> are only required iftaer differ from G:Windows (or WINNT)system32 or Cwindows
(or WINNT)\ sysWOWe6dotherwise the <exe pather <ocx path* may be omittedAlso replacename of
control>with theactuahame of the OCX control in the instructions above.

Chart control Example:

To create a Chart Control on tHestAccesscreen with the unique name of CHART at a position
of Row 5 Column 10 with a depth of 12 rows and width of 40 characters use the following AiF
sequence:

ESC_201;1 ;5,10;12;40w CHART ; MSCIt4 ib.MSChart.2 ESA

Grid control Example:

To create a Grid Control on the HostAccess screen with the unique name of GRID at a position of
Row 5 Column 10 with a depth of 12 rows and width of 40 characters use the following AiF
sequence:

ESC_201;15,;10,; 12,40 w GRID ; MSFlexGridLib.MSFlexGrid.1 ESC

NOTE: There are known licensing issues with the above ActiveXscdheithercontrol does NOT appear in the
respective@ma or macro sampleghen running HOSTACCESS.DEMO from the T&@lfrom your PICK
code please refer to Micrloensngissues fodhmomtraba& nt ati on for possible
http://support.microsoft.com/default.aspx?scid=kkus88597

Visit our Host Access forumsfatp://forums.roguewave.coto viewand share whatt her user s
are doing witlmacro and PICK samples.

Miscellaneous Example
To create a word document object outside theAldosss Screen use the following AiF sequence:
ESC 201, 0w WORD ; Word.Document.8 ESC

94 Developer’s Guide

http://support.microsoft.com/default.aspx?scid=kb;en-us;318597
http://forums.roguewave.com/

AIF TOOLKIT CHAPTER 2

Executing Methods

To call a method of an object you will need to know what parameters to supply (if any). Any
number of parameters will be acceptdddsfAccesss it does not validate your syntax at

execution time. You can also pass additional objects into methods using the relevant Control ID.
E.g. If a method required an image object as a parameter you can send it the Control ID of the
image object, which hagpiously been creatétbstAcceswill convert this object into the
correct “type” before executing the method.

To execute a method, use the following AiF escape sequence:
ESC 204 w contreld ; method ; parami param2 ; param(n)eSA

Where:
control-id Is the Control ID of the object.
method Is a function that is associated with the object. This
someti mes be called a *
paramtn These are optional parameters that are associated v
the method.

The following response will be senthe host application:

<STX> value <CR>
Where:

<STX> Is the start of text character (ASCII decimal value 0C

value Is the actual value returned. If an object is returned |
the method thehlostAcceswiill convert this to a
Control ID. You can then use the control as though i
was an automation object. The Control ID assigned
HostAccesss based on the control ID that returns the
object. I f the control
method which retas another object it will be called
“CHART_0" or “CHART_1"
been used.

<CR> Is a carriage return (ASCII decimal value 013).

Example:

To increase the month of the CALENDAR object
following escape sequence:

ESC_ 204 w CALENDAR ; NextMonth -1 ESCI

Developer’s Guide 95

CHAPTER 2 AIF TOOLKIT

Getting a Property Value
To get a property value, use the following AiF escape sequence:

ESC 202 wontrol-id | property ; parami param2 ; param(n)eSc
Where:

control-id Is the Control ID of the object.

Property This is the property associated with the object.

paramkn Any additional parameters that are used to utilize thi
property.

The Get Property Value response will be:
<STX> value <CR>
Where:
<STX> Is the start of text character (ASCII decimal value 0(

value Is the actual value returned. If an object is returned |
the method theRlostAcceswvill convert this to a
Control ID.You can then use the control as though it
was an automation object. The control ID assigned |
HostAccesss based on the control ID that returns the
object. I f the control
method which returns another object it will be called
“CHART_O0O" or “CHART_1"
been used.

<CR> Is a carriage return (ASCII decimal value 013).

Example:
To return the BackDrop Fill Style of the CHART object use the following AiF sequence:
ESC_ 202 w CHART ; BackDrop ESC

96 Developer’s Guide

AIF TOOLKIT CHAPTER 2

Setting a Property Value
To set a property value, use the following AiF escape sequence:

ESC 203 w contreld | property ; parami param2 ; param(n)’ value ESC

Where:
control-id Is the Control ID of the object.
Property This is the property associated withotbject
paramkn Any additional parameters that are used to set the
property.
value Value to set.

There may be multiple parameters so the last value in the escape code will be taken as the value.

Example:

To set the “Chart Ty p eetttodyp®userthe Jollowifig At bequer@él AR T
ESC_ 203 w CHART ; ChartType ; 6 ESC

Developer’s Guide 97

CHAPTER 2 AIF TOOLKIT

Enabling Events for an Object/Control

One of the problems with using external objects is that they have been written for use with PC

applications were the Event handling is controlled locally on the PC. What happens is that objects

are written to support Isoetosv eorf” ,di“fGoetr eFnotc uesv'e,nt” Ltoyspte sF
“mouseup”. I n a Visual Basic application these events
performance loss. When you then move this concept to the widdstAtcesyou will see the

problem when the events are trattsch back to the Host. Imagine moving the mouse over a

button and the control sending a few hundred events over the network or down a serial cable to the

host. What about the poor host, the volume alone would probably crash the input buffer. All that

saidwe have resolved these issues by implementing an additional stage into the event handling to

disregard and stop transmitting all the unwanted events.

To enable/disable events of an object, use the following AiF escape sequence:
ESC 203 w contreld | type, event ESC

Where:
control-id Is the Control ID of the object.
type “ENABLEEVENT” or “ DI SAB
event The event to be enabled/disabled.

Once the object event has been enabled you musthostifieceséctiveX event reporting.
Example:
To enale a Click event for the BUT1 object use the following AiF sequences:

ESC_ 203w BUT1 ; ENABLEEVENT ; Click ESCI
ESC_ 15;3;16 wBUTI ESC

98 Developer’s Guide

AIF TOOLKIT CHAPTER 2

ActiveX Event Reporting
To enable/disablelostAcceséctiveX Event reporting, use the following AiF escape sequence:

ESC 15 { enable}, 16 w contrid ESC)|
Where:
enable 1 = Disable events (discards outstanding stacked e\

2*= Enable events.
3 = Stack events (recommended for ActiveX use).
control-id Is the Control ID of the object or the Control Group |

When an ActiveX event is reported to the host, information about that event is sent in the following
format:

<STX> WC <CR> /id , 16 , event, noofparams,
Where:

<STX> Is thestart of text character (ASCII decimal value 00
wcC Literal characters.

<CR> Is a carriage return (ASCIl decimal value 013).

id Control ID of the control associated with the event.
16 Literal characters.

event The event name i.e. Click.

noofparams The number of parameters that are supplied with the

event.
params The parameters that follow.

Developer’s Guide 99

CHAPTER 2 AIF TOOLKIT

Destroying an ActiveX Object/Control
To destroy a named control, string list or control group, use the following AiF escape sequence:

ESC 10 {; delete} veontrol-id ESCl
Where:

delete Use only if ID is that of a control group:
1 = do not delete controls inside group.
2* = delete all controls in group.

control-id Control ID, string list ID or control group ID.

Destroying a control will flush it frafostAccessnemory. The control is immediately removed
from the screen. If the specified control currently has focus, or would have focus if the application
were the active top level Window, then focus is shifted to the root.

Deleting a control group will bgfdult delete all the controls in that group. To retain the controls,
set the delete parameter to 1.

100 Developer’s Guide

AIF TOOLKIT CHAPTER 2

Common Problems

Some common problems you may encounter using the Windows AiF features are described below
with suggsted solutions.

Sculpting

Sculpted Boxes/Lines do not appear

Check that you have turned the sculpture mode on.
Sculpted Boxes/Lines still appear after application ends

Check you have turned theulpture mode off.

Control Management
Cannot Change Control Colour

Check that you have the correct control name.
Check that you change the colaftier displaying the control.

No Response From Clicking a Control

Check that the event has been set up correctly with the correct name.

Check that the control you are using has a respsm®se do not have an attached event.
Check that the mouse is working correctly.

Check that the crorct event number has been enabled for the control.

Secondary Windows
Cannot switch from a secondary window

Check that the window is modeless.

Buttons
No image appears

Check that the image file exists, and is of the correct type. See Appeestixiding Iméges
details.

Toolbars and Toolboxes
Toolbars or Toolboxes do not appear

Check that you have specifically set the toolbox or toolbar to show.

Developer’s Guide 101

CHAPTER 2

102

AIF TOOLKIT

Fonts
Controljs fontis different to the specified font.

When you create a control containing text (for example, an edit box), and you
specify the fonffor example, Helvetica 8), this font may be changed in your
display. This is because Windows substitutes certain font, as specified in the
[fontsubstitutes] section of the ys&WIN.INI file. For example, Arial may be
substituted for Helvetica.

To alterthis, alter the font substitutiesee your Windows programming guide
for details.

Note: If a font is not defined on the usdPC, Windows always tries to match to
the closest available font.

Controls and Macros

General ActieX controls such as MSChMgFlexGridor Calendar (MSCAL)
do not ship with Host Access. As a result some maerdsXFIG1.mcr
through AXFIG4.mcror demos may ngierform correctlyithout these
controls. Install and register these contarighe client machine prior to
running the macros or demos.

Pl ease refer t o Rdyistgingeamd U&rigéctiveXx ct i on
(COM) Objects/Controls, for a detailed solution.

Developer’s Guide

titl

ed,

Chapter

AiF Utilities

The following sections describe how you can ugefiieations interface Facility (AiF) to

exploit the power of library routines and screen manipulation fdatstéscesprovides a
sophisticated, application driven workstation. While continuing to support existing applications
unchanged through industry standard terminal emulations, you can also introduce a PC style user
interface to host applications with celevindows, poglown menus and many more features.

How AIiF Sequences Work

The AiF supports standard ANSI X3.64 compliant ESCape sequences that may be used by host
applications to drive the AiF features.

Any host process that can send output to a teraainallso make use of AiF by sending special
AiF sequences tdostAccessunning on a PGHdostAccesintercepts these sequences and takes
the appropriate action (for example, saving a screen image).

Software developers normally define these AiF sequetidisey can be referenced globally as
variables by their applications code (either dinneror compile time).

Types of Sequence

HostAccesgxpects the AiF sequences to conform to a certain format. Every screen AiF sequence
starts with the ESCape character (ASCII decimal value 27). The next two characters in the sequence
depend on the type of feature required.

The semtolon character is ubas a delimiter to separate parameters in a sequence.

Note: a common programming error when using AiF sequences is to forget/misplace the
delimiters.

Developer’s Guide 103

CHAPTER 3 AIF UTILITIES

Screen Manipulation Sequences

This type of sequence is called an ANSI CSI (Control Sequence IntrGénegg)ly, these
format sequences usually denote that the sequence is beindlosbdidegs$or colour, box or
line drawing, saving/restoring screen images, etc.

This type of sequence requires a terminating character, telling the AiF what éagiligds r
these are described for each sequence.

Format: left square bracket and equals $gi, terminated by a lowease character.
So an entire sequence in this format can be described as:
ESC[=A1;A2; .. Anf
Where:
ESC Is an escape charadigecimal value 27).
Al... An Are parameters (typically colour attribute setting, column/rovdicate.

f Is a lower case terminating character, such as 'x' for box drawing.

Library Sequences

This type of sequence is called an ANSI APC (Appli€atignam Command). Generally, this
format denotes that the sequence is being used by the AiF to interface into main DOS library
routines, such as R@pwn Menus.

Format; Underscor e _ ", f ol | owe\dSolayentae seqagumaet a | letter ter
this format can be described as:

ESC _B1;B2;...BnF data string ESC
Where:
ESC Is an escape character (Decimal value 27).
Bl...Bn Are parameters. These parameters depends on the AiF sequence.
F Isanuppec ase | etter (such as * X').
data d4ring Is optional data for the AiF, such as box heading text.
ESQ Il's the escape character (deci m¥l

Note: spaces are shown between characters only for the purposes -ofheaétypaces should
not be included within the sequence itself.

104 Developer’s Guide

AIF UTILITIES CHAPTER 3

Sequences Summary

The following screen AiF sequences are supported:

Tailoring the environment See from pagel 10

Set colour. ESC[=A1;A2;A3;..Anm

Switch ANSI colour mode ON. ESC[=7h
Switch ANSI colour mode OFF. ESC[=7 I

Detect colour/mono monitor. ESC[=6n

Detect blinking status. ESC[=7n

Open window. ESC[=Y1;X1;Y2;X2;WT;Al;..;Anu

Close windw ESC[=Fv

Window heading. ESC_X1;Al;..; AnW ..title... BSC

Window footing. ESC_X1;Al;..;AnU ..title... BSC

Load exit keys. ESC _ Z exit_keys ESC

Reset poglown menus. ESC[=2;SNI

Load popdown menus. ESC_N1;SNMH1;E1;E2;.. ;EnBSC

Activate pogdown menu ESC[=22;SN;m;e;Ylh

Close current pegown menu. ESC[=221

Reset cascading menus. ESC[=2;SNI

Load cascading menus. ESC N1;SNMH1;E1;E2TCCN,; ..;EnESC

Activate cascading menu. ESC[=22;SN;m;e;Ylh

Close cascading menus. ESC[=22]

Reset selection boxes. ESC[=24;SNI

Load selection boxes. ESC _SN;Y1;X1;DT;BT;MT;MWSHL;ELl;E2
En ESC\

Activate selection boxes. ESC[=23;SN;Enh

Activate selection boxies ESC[=24;SN;Enh

previously opened window.

Close selection boxes. ESC[=23]

Activate Line input. ESC[=25;FL;VL;SMh

Developer’s Guide 105

CHAPTER 3

Tailoring the environment

AIF UTILITIES

See from pagel 10

Activate Box input.
Invoke window editor.
Load exit keys.

Push environment.
Pop environment.

Display Optimisation

ESC _Y1;X1;FL;BS;BT;VL;SMJtext; title\ESC
ESC[=26h

ESC_Z exikeys ESC

ESC[=99p

ESC[=99(

See from pagel 48

Save SLOT number N.

Restore SLOT N to screen.

Push screen image onto SLOT

STACK.

Pop screen image from SLOT

Stack.

Write to FORMnhumber Fn, form

version number Fv

Display from FORM number Fn

Change FORM file name.

Clear currently active FORM file

Request FORM file version
number

Freeze ON.
Freeze OFF.
Turn host echo on.

Turn host echo off.

Applications enhancement

ESC[=Np
ESC[=Ng
ESC[=p

ESC[=q

ESC[=Fn;Fv;1sTEXTESC[=s

ESC[=Fnr

ESC _ F DOS_form_file_name ESC
ESC[=s

ESC[=Fn;1r

ESC[=1h
ESC[=1I
ESC[=13h
ESC[=13|

See pagel57

Draw box.
Draw Line.

Display message.

106

ESC[=Y1;X1;Y2;X2;BT;Al;..;Anx
ESC[=Y1;X1;Y2;X2;LT;Al;..;Anz
ESC[=C1;Al;..; Anw message CR

Developer’s Guide

AIF UTILITIES

Applications enhancement See pagel 57

CHAPTER 3

Cleamessage line. ESC[=wCR

Force system message line displ ESC[=11h

ForceHostAccesstatus line ESC[=111
display.

Set mode specified by n. ESC[=3;nh
Reset to user configured screen ESC [=3 |
mode.

Selects block cursor. ESC[=4h
Selects line cursor. ESC[=41
Cursor ON. ESC[=10h
Cursor OFF. ESC[=101

Set screen fill character to charalESC [=12 ; nnn h
with ASCII value nnn.

Reset fill character to spa ESC[=121

Switch to PC font table specified ESC[=9;nh
n.

Reset default font table. ESC[=9]I

Suppress screen output outside ESC[=5h
current window.

Disable output suppression. ESC[=5]1

Centre text in window. ESC _ Y1 C texESC\
Macros. ESC_ sscripttext ESC
Keyboard control features See from pagel70
Program Function key n. ESC _n KKey data ESC
Toggle Caps Lock ON. ESC[=28h

Toggle Caps Lock OFF. ESC[=281

Switch scancode keys ON. ESC[=6;ph

Switch scancode keys OFF. ESC[=61

Switch typeahead ON. ESC[=20h

Developer’s Guide

107

CHAPTER 3 AIF UTILITIES

Switch typeahead OFF. ESC[=201
Keyboard control features See from pagel 70
Enable command stack. ESC[=2lh
Disable command stack. ESC[=211
Detect if mouse installed. ESC[=8n

Switch mouse monitoring ON. ESC[=27;nh
Switch mouse monitoring OFF. ESC [=27 |

DOS Integration See from pagel82
Invoke DOS gateway. ESC _ sc ; 0O D Cmd1 ; A
Print screen. ESC[=0I

Switch OFF direct (slave) printintESC [=4 |
Switch ON direct (slave) printing. ESC [=51

Change current print device. ESC _ L device.name ESC
Erase single DOS file. ESC _ E filename ESC
Request working DOS run ESC[=9n

directory.

Verify DOS path. ESC _ G path ESC
Windows Integration See from pagel 94

Displays an image. IMAGE /I filename {/T title} {/{Z zoom} {/F}
Closes an image application. = ESC _ x AP ESC

Control Window state. ESC _STc AP ESC

Start any Windows program on {ESC _ ST e PN ESC
desktop.

Dete_ct if Windows application is ESC _a AP ESC

running.

Send keys in DOS keyboatdckel ESC _ k AP % keys ESC
format to specified Windows
application

108 Developer’s Guide

AIF UTILITIES

Dynamic Data Exchange

CHAPTER 3

See from page06

Close a DDE link already
established with Initiate DDE
.sequence

Send commands to server
application

Open a DDE channel with a
server

Pass data to server
Retrieve data from server

Miscellaneous Facilities

ESC _9d SN;TP ESC

ESC_2;TMdSN; TP ; MAESC
ESC _ 1d SN;TP ESC

ESC _ 3; TMd SN;TP;IT;ST ESC
ESC _4; TMd SN;TP;IT ESC

See from page0Q

CloseHostAccesfrom host.
Request serial number.

Returns information about
HostAccesand its rurtime
environment.

Request Printer Information

Request the PC Date and/or Tin

Request the Computer Name
and/or User Name

Request aBnvironment Variable

value
Send screen to host system.
Change emulation

File transfer

Developer’s Guide

ESC _XESC
ESC[=1c
ESC[=10n

ESC _84 wESC
ESC _84 wESC
ESC _84 wESC

ESC 84w ESC

ESC[=2I,ESC[=2;n
ESC[=n{

ESC_mode;hostdrivenl;append;0;protocol;ist direction
;remote edc

109

CHAPTER 3 AIF UTILITIES

Tailoring the Environment

A user of an application should easily and intuitively understand how it works and interacts.

Presentation (the user interface) is the most importa
enables developers to design sophisticatddeardly application user interfaces without the need

for complicated coding.

Interface aspects that can make an immediate impact on users are:

p=

Colour, see below.

Windows, see pa&4

Menus, see paté7

Selection boxes, see pag2

GUI: See Chapter 2, AiF TOOLKIT for further details.

> > > >

Using Colours
HostAccessupports ANSI standard colour sequences in most of its Terminal Emulations.

Standardarminal video attributes are mapped into colour by default (such as bold into red on
black), enabling existing applications to use colour without modification.

We have also defined a series of ANSI compatible colour sequences so you can use any PC colour
from within any application regardless of the terminal type being emutlisthbgess

110 Developer’s Guide

AIF UTILITIES CHAPTER 3

AiF Sequence - Using Colours
ESC[=Al;..;Anm
WhereAl ... Ancan have the following values:

0 All attributes off (colours are reset to ligh
Gray text orBlack background).

1 Intense on

2 Intense off

22 Intense off

7 Reverse on

27 Reverse off

30 foreground to Black 40 background to Black

31 foreground to Red 41 background to Red

32 foreground to Green 42 background to Green
33 foreground to Brown 43 background to Brown
34 foreground to Blue 44 background to Blue

35 foreground to Magenta 45 background to Magenta
36 foreground to Cyan 46 background to Cyan

37 foreground to Light Gray 47 background to Light Gray

The 16 PQoreground colours are achieved by using the 8 colours above with or without the
intense bit set.

The Intense Bit Set

Colour Attribute Value Colour Value Attribute
Black 30 Dark Gray 30;1
Red 31 Light Red 31;1
Green 32 Light Green 32,1
Brown 33 Yellow 331
Blue 34 Light Blue 34;1
Magenta 35 Light Magenta 35;1
Cyan 36 Light Cyan 36;1
Light Gray 37 White 371

To set the screen colours back to the currehtostAccessdefault colours use the AiF
sequence:

ESC[Om

This restores the colours to the state they were inHaseAccessvas loaded or to the colours set
by the last ESC [=90..m sequence (described immediately below).

Developer’s Guide 111

CHAPTER 3 AIF UTILITIES

Special values may be assigned fogtatribute in the colour sequence to changedimal text
colour and the default colour settings for application driven AiF Menus.

The following attribute values apply:

A1 =90 Changes the default normal colour, used for clear screens, clear to el
line, etc.

Al =91 Changes the Window and B&hadow colours.

Al =97 Changes the main Menu colour.

A1 =98 Changes the selection character colour in Menus.
A1 =99 Changes the Menu highlight 'bar' colour.

(Remember, if the first attribute is not one of the above values, the current coldas atitilne
changed.)

Resetting the colour parameter to the default setting
To reset the appropriate parameter to the default setting, use one of the satpveinges:

ESC[=90m
ESC[=91m
ESC[=97m
ESC[=98m
ESC[=99m

Using Colours Example - DOS AiF
To reset the user's default foreground and background screen colours to white text on a Blue
background use the following command sequence:
ESC[=90;0;1;37;44 m
and then clear the screen.

Note: attribute parameters change only one component each, e.g. 'ESC [= 37 m' changes the
foreground colour to white but does not affect the background colour, intensity.

If colour is simply used to highligtay}san error message, and the you do not want to reset the
current colour attributes, you can simply open a window to display the message. Within this window
the colours may be configured without affecting the current screen's attributes. Once the user has
read the message display in the window, the application program simply closes the window.

Switching ANSI Colour Mode On/Off

Use this AiF sequence to tétistAccesso support ANSI standard colour sequences in all of its
Terminal Emulations.

Normally attibutes such as flashing, intense and reverse are mappedtbebégbess internal
tables into special colours so as to give monochrome applications some immediate colour (without
the need to change these applications). In ANSI Colour Mode, vidateattiib applied literally.

112 Developer’s Guide

AIF UTILITIES CHAPTER 3
Use the following sequence:

ESC[=7h Switches ANSI Colour Mode on.
ESC[=7I Switches ANSI Colour Mode off.

Developer’s Guide 113

CHAPTER 3 AIF UTILITIES

Using Windows

AiF's programmable windows is onélo§tAccess most powerful featureroperly used it can
liberate applications from the restrictions of only being able to display information on one screen at
atime.

AiF windows allow applications to open up a 'virtual' screen of any size anywhere on the current
screen. All output seny the application to the PC's screen will be displayed within this window.
Cursor addressing is now relative to the topaeitl corner of this window. If the application

clears a screen, changes a video attribute, or the fore/background colowrseetdl, ahly affect

the area of the screen that is inside a window.

Any number of windows may be opened and effectively layered on top of each other. Closing a
window reactivates the previously opened window or the original screen, if no other wiadows hav
been opened.

It is useful, in some circumstances, to be able to close a window and leave its contents behind on
the screenthis is one of the many options available with windows. Other options include
Headings, Footings, borders and other effects.

Windows AiF Sequence
ESC[=Y1;X1;Y2;X2;WT;Al;..;Anu

Where:
Y1l Top lefthand row.
X1 Top lefthand column.
Y2 Bottom righthand row.
X2 Bottom righthand column.
WT Describes the window type:

0 No border.

1 Single line border.

2 Double line border.

3 Single line at top and bottom, double at sides.
4 Double line at top and bottom, single at sides.
32 Do not clear screen behind window.

64 Shadow window.

128 Explode window.

114 Developer’s Guide

AIF UTILITIES CHAPTER 3

Al .. An Optional parameters to set the window colour. Iprextent, the current
colour Attribute is used.

U Is the literal u.
To open a window starting at the top-tefbd corner of the screen, set X1 and Y1to 1.

To centre the window within the current screen, set both X1 and Y1 to O (zero). In this case, the
window size is determined by the absolute values of X2 and Y2.

To centre the window in the "zeroed" plane, set either only X1 or Y1 to O (zero) , i.e. either
horizontally or vertically.

Note: the last three values YWiT are additive, e.g. a single lineléed window that is exploded
and shadowed ha$\fl' value ofl®B (1 + 64 + 128 ARB).

Closing a Window
To close the window use the following sequence:

ESC[=Fv
Where:

F=0 If Fis zero or absent then the screen behinditi@ow is restored.

F=1 To leave window contents on screen.

Example

The application needs to display an important message, and ensure that the user has noticed it by
waiting for acknowledgement. Conventional applications reserve one line for mésgstmges o

attract the user's attention by putting the message in reverse video and possibly in some sort of box.
However, the user might miss the message, and the message is displayed at the cost and time of
having to redisplay the whole of the underlyiregges. Use AiF to avoid these problems. To output

a messageRROR! in White text in a Red window and then wait for user input, use the following

AiF escape sequence:

ESCI[=16;36;18;44;1;0;1;37;41u
ESC[2;2H

ERROR!

input dummy

ESC[=v

Developer’s Guide 115

CHAPTER 3 AIF UTILITIES

Window Headings And Footings

A heading and/or footing may only be displayed within the border of a window. If the window has
been opened without a border, then headings and footings are ignored.

To put the title in the top of the windowrber, use the following sequence:

ESC _X1;Al;..; AnW ...Title... ESC\
To put the title in the bottom of the window border, use the following sequence:

ESC _X1;Al; ..;AnU ...Title... ESC\

Where:
X1 Is the starting column tfle. If set to 0, or absent, the text is centred.
Al;..;An Are the colour attributes.
W I's the Iiteral CW
U I's the Iiteral C U’
Title Is the text for the title.
ESC Is the terminator.

If the title text is wider than the window border it wilghered. If no colour attributes are
specified then the current window attributes are used.

Footings are treated in the same way as headings with regard to positioning and attributes.
To clear a heading or footing that has been previously placed onasivimaly send the heading
or footing sequence as appropriate, with the "Title" set to null.

Example

Use the following sequences to open a window witdomates 8,30 and 12,50 in Yellow text on a
Blue background with a footing in White text on Red oorgahe text 'Help'. The window is to
be exploded, shadowed and with a border.

ESC[=8;30;12;50; 196;0;44;33;lu

ESC_0;37;1;41 UHelp ESC\

116 Developer’s Guide

AIF UTILITIES CHAPTER 3

Using AiF menus
There are three AiF sequences that control the use ldeAiFs from within an application.

One sequence enables an applicatimadvlenus into the PC memory in readinesadtivatidyy
the application using a second AiF sequence.

Once a menu has been activditestAccessloes all the work in processihg tiser selection and

returns the user's choice to the host application. The application can then translate this choice into
the required action and process the user's choice as it would normally do. Once an application has
received the user's menu chaids,normal to "close" the menu so that the underlying screen can

be updated by the application, if required. Each AiF menu type has its own close menu sequence.

A separate AiF sequence is providedie@specified menus frorlostAccess memory.

The Pllowing areas are covered in this section:

p=

AiF menu types, see below.

Menu options, see patt8

Menu sets, see pad3

Colour configuring menus, see e

Configuring dection characters and separators, sed page
Menu- Exit keys, see patj2Q

Popdown menus, see paf?

Cascading pegown menusl 27

> > > > > > >

AiF Menu Types
Two basic types of menus are supported bytA#se are pegown menus and selection boxes.

Popdown menus work on the principle of a menu bar (usually across .the top of the screen) from
which lists of menu elements ggwn as the user moves tafright between menu headings on
the bar. Any element within a pdg@vn menu may cascade into anothetdooyn menu.

Selection boxepdp-up menusg work on the principle of popping up a single list of selections
(anywhere on the screen) and allowingsteta move up and down this list to make a choice. To
implement the simplest form of AiF PDpwn menus, see P@mown Menus on pade?2

Developer’s Guide 117

CHAPTER 3 AIF UTILITIES

Menu Options
A variety of options is available for AiF menu tyfies options include:

Menu Type Option Description

all To allow host applications to have access to more than one menu set at
by saving these into areas of PC memory (called menu slots) without the
reload each menu set.

all To colourconfigure every aspect of any menu.

all To specify each menu heading's and menu element's selection character
single keystroke selection.

all To provide a variety of exit keys with which the user may choose to leave
menu (e.g. Allowing f18 a "help exit key" from a menu).

all To cater for user's typeahead within menu processing.

all To use a variety of menu styles, including Novell and separator lines with
menu elements.

all To optionally leave the menus displayed osctieen after the user has made
selection.

all To store menu loading sequences (together with headings and elements)

PC's disk in special AiF files called forms. This can be useful to speed uf
loading for more information, see FORMs on@agl

pop-down To reposition the pedown menu bar to any row on the screen.
selection To run selection boxes (pap) menus within AiF windows.
boxes

The options that apply to all menu types are documented in the fakstiogs. Menu type
specific options are then documented within each menu type in the appropbeateriPomEnu
section.

Local processing of user's keyboard inputs may be controlled by host applications if they need a
typeahead facility. Please see Tyaddhiede on padk/ 7for more details.

Menu sets

Menu sets enable host applications to load more than one menu into the PC's memory at the same
time. Each menu set can be instantly activated by sending theasppgkdpsequence to activate
the menu from a specified menu set.

Host applications need to specify the menu set required when they load EACH menu to the PC.
This menu set number is the 'SN' parameter (sded®apMenus on pade?? on the load menu
sequences and will default to 1 if not specified.

118 Developer’s Guide

AIF UTILITIES CHAPTER 3

Host applications need to ensure that they do not create menu set number conflicts, by loading two
or more menu sets into the same menu set number. In this case, the last loadédentau w
one used when the menu set number is selected.

HostAccessupports a maximum of 50 menu sets for EACH menu type.

The following overall limitations apply:

Menu Type Overall Limitations

Pop-down Maximum number of pegown menu sets 50
Maximummenus per menu set 100
Maximum menu elements per menu 20
Maximum menu elements per menu set 2,000
Maximum number of menu elements across alipep 100,000
menu sets

Selection box Maximum number of selection box sets 50

(Pop-up)
Maximum sizébytes) of all menu elements per menu s 32,000

Assuming 30 bytes per menu element, approximate 1,066
maximum number of menu elements per menu set

Approximate maximum number of menu elements aci 53,300
all menu sets

These limitations are intendedguidelines oryost applications should never need to even
approach them. These limitations are also constrained by the available memory on the user's PC.

Colour Configuring Menus

An application using the AiF menus change the default colours of its menus so that they can be
differentiated from other applications' menus. This is done through an extension to the AiF colours
sequence. By including a code in the range 97 to 99 as the first patash&teessapplieghe
subsequent parameter values as colour attributes for the AiF Menus.

These parameters have the following meaning:
97 Set the colours of the menu bar and-gogn/up menus.
98 Set the colours of the select character.
99 Set the colours of theghlighted selection bar.

Developer’s Guide 119

CHAPTER 3 AIF UTILITIES

Both foreground and background colours may be set with each of these parameters.

Note that a menu's colours are determined when the menus are loaded to the PC and are retained
with that menu. Menu colours cannot be dynamitelhged by an application unless the menu is
reloaded after the menu colours have been changed.

Sending these AiF colour sequences with no colour parameters after the 97, 98 or 99 sets the
appropriate menu colours back to the system defaults.

This is degibed in more detail in Using Colours on {ddde

Configuring Selection Characters & Separators

As each menu’s list of selections is loaded it is possibleltst&ticessvhich character within
each element should be highlighted as the selection character.

Manoeuvring through menus by the user is extremely simple and fast and is consistent with the way
in which a user would move throddistAccess own configuratiomenus .

The first character of each element will be used as the selection character by default, if a particular
character is not specified.

To designate any character within the menu element as the selection character, simply prefix the
desired charactefith an ampersand "&" . If an ampersand is required as part of the text of a menu
element then a double ampersand "&&" can be used to achieve this.

Selection characters may be specified in all menu types and in any menu element (including the
menu headingm the menu bar for Pdpown menus).

If a null menu element is sentHostAccesst is treated as a separdtmstAccesslisplays a line
in the position of the null element. This is useful for breaking up groups of different menu choices
within a singl menu list.

Menu - Exit Keys

All the AiF menus allow the user to exit the menu by pressing an exit key defined by the host
application. If these are not defined, a user can exit menus with a carriage return (to show
acceptance tfie selected elements) or by pressing the ESCape key (to skelgatimm of any
element and exit the menus completely). However, configurable exit keys give host applications
immense flexibility in the way in which they handle user selections withenAs-

For example, using defined exit keys, an application can provide a "tkelp'($at Function Key
10) for any element within any menu. The user is able to press F10 to ask the application to display
help and then return instantly back into theusn¢o move or make a selection.

In addition, exit keys can be used by applications as\tideriexits. For example, you could
define F2 to always process the same event, regardless of where the user is within the current menu
set. This allows fast manwggng and selections of actions from within menus.

Loading Application Specific Exit Keys
To load application specific exit keys as required, use the AiF sequence below:

120 Developer’s Guide

AIF UTILITIES CHAPTER 3

ESC _ Z exit_keys ESC\
Where:

4 Is the capitdktter Z- AiF code for exit keys.

exit_keys Are the exit keys that the application will recognise when returned from tt
menu. These are in the mnemonic format as described in DOS Keyboarc
on pagel84 e.g. as CRifearriage return, ES for ESCape, F1 for function k
1, etc.

User Response

When exit keys have been configured and loatfedtAccesshe user's response from a menu
will be returned to the host application in the following format:

<STX> exit_key <CR> menu_path <CR>

Where:
<STX> Is the special start of text character with ASCII decimal value 002.
exit_key Is the mnemonic for the exiék used to leave the menus. (as described
above). If you define single characters as exit keys, these are returne:
characters. For example, '"Xx' is
' X).
<CR> Is a carriage return character with A8€&dimal value 013.

menu_path Is the path in the form of menu element number(s) for the currently
highlighted menu element, delimited where appropriate by commas ",

Note that thamenu_pathis always returned, regardless of which exit key was useset Tioe
exit keys to the default, seit-key to null.

Examples

To loadHostAccessvith the exit keys required for Menus so that only Carriage Return, ESCape
and the Function Keys F1 and F2 are permitted, use the following AiF sequence:

ESC _ZF1F2ESC\

Developer’s Guide 121

CHAPTER 3 AIF UTILITIES

For example, the menu bar currently highlights the second element in the-thordrpogenu. If

the user pressed Function Key 2 the following would be returned to the host application:
<STX> F2 <CR> 3,2 <CR>

Function Keys 1 to 10 mnemonics are Fi#0F0 for F10.

If the user pressed Enter the following would be returned to the host application:
<STX> CR <CR> 3,2 <CR>
Where the first CR is the literal letters "CR" (the otB&>s are carriage returns, ASCII 013).

It is important to note that exigreither poglown or selection boxes by pressing the ESCape key
will return a menu path of 0,0 or O respectively.

Terminal Echo - AiF Menus

You should turn terminal echo off before getting the response from AiF menus, so that this is
displayed on the user's screen. You can use an AiF sequence to suppress host echoed output that
may be used instead of the host system's equivalent command. For more details, see Host Echo
On/Off on pagel56 Terminal echo shitd be turned back on once the menu response has been
input.

Exit keys are common between the AiF Menus, Field Inputs and responses from Imagé displays
is the application's responsibility to maintain different exit keys between menus, field inputs and
Image displays, if required.

Pop-Down Menus

The AiF sequences needed to usedosgn menus are documented below in the logical order that
they would be used by a host application:

Clear popdown menus. ESC[=2;SNI

Loadpop-down menus. ESC_N1;SNMHL;ELl; . ;EnESC\
Activate popdown menus. ESC[=22;SNh

Close pogdown menus. ESC[=22]

Get user response to pdpwn menus. See example on p&d6

All the sequences below assumed to be for menus running in the default AiF menu set, i.e.
menu set 1 (one).

122 Developer’s Guide

AIF UTILITIES CHAPTER 3

Clearing Menus

The following AiF sequence clears all applicatioiBap menus from the menu set SN in the
PC's memory:

ESC[=2;SNI
Where SN is an integer between 1 to 50.

Loading Menus
To load a poglown menu intdHostAccess memory on the PC, use the following sequence.
ESC_N1;SNMHL;EL;..;EnESC\

Where:

N1 Is the menu number from 1 to 1@hly menu numbers 1 to 8 may be presente
from the menu bar. The first element in each of these menus will be taken a
heading for that pegown menu.

SN Is the menu set number from 1 to 50 (if not specified, default is one).

M Is the capital lette!' - AiF code for Menus.

H1 Is the first parameter and will be used as thi®Bam Menu's heading in the
Menu Bar for menu numbers 1 to 8 only. For all other menus, this is the first
element.

E1..En Are the menu elements, up to 20 perBPown Meu.

Note: Menu Heading and Element text strings should not contaiootens (interpreted as
element delimiters). Nor should they contain control characters, which will corrupt the menu text.

Using Pop-down Menus

Up to 100menus may be loaded at any one time and each menu may contain up to 20 elements.
Each element may be a maximum of 78 characters long. This means that one menu set can be used
to present the user with up to 2,000 options.

Popdown menus automatically jystifenu headings across the menu bar. A maximum of 8 menu
headings may be presented on the menu bar. Menu headings are truncated if their total width
exceeds the current screen width.

Menus can be dynamically reconfigured to suit the application's reglivsnagy point, the host
application may reload any menu simply-bgmnéing the AiF sequence for that particular menu. In
this way, menus can be modified dependent upon how the application interprets the user's
selections, actions, access securitycaod.

Developer’s Guide 123

CHAPTER 3 AIF UTILITIES

Activating Pop-Down Menus
Use the following sequences to activate théBom Menus for user interaction:
ESC[=22;SNh

Runs the menu set number SN starting at menu 1 element 1, unless the menu habdfees, used
in which case it starts at the last selection.

You may optionally extend this sequence to specify that a specific element in a specific menu be
activated as the highlighted option when the menu set is invoked by the AiF sequence below:

ESC[=22;SN;m;e;Ylh
Where:

SN Is the menu set number and is integer between 1 and 50.

m Is the menu number to be activated.
e Is the menu element number to be activated.
Y1l Is the row number on which the menu bar will be displayed (i.e. between 1 anc

current screen depth).

If a row number that equals the current screen depth (normally 24) is used thetonm pop
menus will be available from the menu bar.

This sequence will run the current menu set nudibstarting at tofevel menu 'm', elemerit 'e

If the m;e parameters are set to 0;0 tHestAccesautomatically activates the menu at the last
‘remembered’ menu position and redisplays the menu set through to the last selected option (within
cascades if appropriate). If these are set to "0;@isuslthe first time the menu is invoked, then

the option in menu 1, element 1 is highlighted when the menu is activated.

When the Pofpown Menus are activated they appear over the existing screen. As the user moves
through the menuklostAccesistanty refreshes the underlying screen.

Getting a Pop-Down Menu Response

AiF PopDown Menus allow a user to manoeuvre around the menus using the up, down, left and
right arrow keys. The Home and End keys will moveghkgiht bar to the top and bottom of a
PopDown Menu list. To select a menu option, the user presses the Enter key (or a valid exit key)
when the highlighted element is the required option. Pressing the ESCape key at any point allows
the user to exit frothe PopDown Menus. To jump left or right between menus when on the
menu bar, press <Control> plus the letter of

124 Developer’s Guide

he

me nu

AIF UTILITIES CHAPTER 3

HostAccess AiF handles all of the menu movement and underlying screen refreshes without any
intervention or additional code on the host system. Once a user selects an option, AiF will send the
selected Menu number and the Element number to the Host system. It is a simple matter for the
host application to interrogate this response and deternigheoption the user has chosen.

Pop-Down Menu Response

The PopDown Menu response from AiF takes the format:

<STX> exit_key <CR> Mn,En <CR>
Where:

<STX> Is a special Start of Text character (ASCII decimal value 002).This characte
the start othe menu response string and enables the application to discard ¢
typeahead input that could have been sent before the response string itself.

exit_key Is the Exit Key mnemonic in the AiF Keyboard Stacker format as defined on
Keyboard Stacker (patf®) - also see notes on Loading Exit Keys (pagdor the
key used by the user to exit from the menu.

<CR> Is a carriage return (ASCII decimal value 013).
Mn,En Is the menu path of the option sedelcas returned yostAccesswWhere:
Mn Is the number of the option selected, from 1 to 100.
En Is the menu element number of the option selected digit number, from O
Please refer to the examples below to see the logic required @mnobi&imenu response.
If the user hits the ESCape key whilst in menus, the menu number and element number are both
returned with a value of zero.
Closing Pop-Down Menus
Use the following sequences to close theD@am Menu:

ESC[=22]
closes the currently open Fdpwn Menu.
When the Pojpown Menus are activated they appear over the existing screen. If anether Pop
Down Menu had previously been activated, it would have been closed by the activation of the

current menu. Intber words, there is no concept of a "stack" of operDBom Menus and
applications should only need to issue one close menu command.

Developer’s Guide 125

CHAPTER 3 AIF UTILITIES

A close menu sequence must be setibstAccesbefore the application can correctly update the
underlying screen. lig¢ menu is not closed, the screen update may appear within the "window"
opened for the currently active Hapyn Menu's element list.

Closing the pogown menu does not remove it from the PC's memory. The same menu may be
reactivated at any time with thetivate menu" AiF sequence.

Pop-down menu example 1

To change the application menus to be Black letters on a Light gray background, with the select
character in Red and the selection bar with White characters on a Black background use the
following'code":

menu_color = 'ESC[=97,0;'
select_color = 'ESC[=98;0;'
hilight_color = 'ESC[=99;0;'

sendto PC menu_color '30;47m'
sendto PC select_color '31;47m'
send to PC hilight_color '1;37;40m'

Pop-down menu example 2

The code below illustrates a schematictste for loading and activating AiF's-Bogvn Menus
and for interrogating the AiF menu response. Developers can use this type of logic to provide their
applications with a common routine that handles all the AiF menus processing.

* assign variables for menu text and number of menus *
get menu_text
get nbr_of_menus
* clear any existing menus (from menu set 1) *
send to PC 'ESC[=2;1I'
* load the Pop - Down Menus using the following code (into the *
* default menu set number 1) *
menu_nbr=1
loop
while men u_nbr <= nbr_of _menus

this_menu = menu_nbr ; 1 'M' menu_text(menu_nbr)

send to PC 'ESC_U this_menu 'ESC \'

menu_nbr = menu_nbr + 1
repeat
* activate the pop - down menu *
* and interrogate the AiF Menu response as follows *
quit = false
loop

* get AiF menu response prefix *

send to PC 'ESC[=22;1h'
loop
turn terminal echo off
input menu_prefix

126 Developer’s Guide

AIF UTILITIES CHAPTER 3

until ASCII char 002 found in menu_prefix do
repeat
* now get the user's menu selection *
menu_nbr =0
input menu_coordinates
extract menu_nbr (from menu_coordinates)
extract menu_element_nbr (from menu_coordinates)
if menu_nbr ='0' then
quit = true
end if
turn terminal echo on
* now process the option selected ¥
* as any application would do so ... *
* Remember, you will need to close the menu if
* you need to update the screen ... *
until quit do repeat

This 'code’ loops around the host system's input buffer waiting for a valid AiF start of menu
responseharacter. This is necessary to discard any redundant input in the input buffer.

Once this is found, the menu option selected may be easily determined by extracting the menu
number and the element number from the next input. If the user has hit the KeSGlaipas

detected (menu_nbr = 0) and the process exits the loop. Otherwise the menu option chosen is
processed normally, as any application would do.

Notes. You should load pegown menus into (and cleared from) specific menu slots, to avoid
clashes wlitother application's AiF menusost applications will need to manage menu slot
numbers to prevent conflicts.

You may wish to use the AiF sequence to push and pop complete "environments" before
loading/reloading application specific menu sets. Thisaulte that there is no possibility of their
menu sets clashing with another application. Please see Save Environmehd tiopagee
information.

Cascading Pop-Down Menus

Cascading menus may be used to enhance existibhg#domenus by giving applications the
ability to control and display a menu tree structure. The use and operation of cascading menus is
simply an extension ostAccess existing PePown menus system.

The appropriate AiF sequences for cascadindgeap menus are described in the next sections.

Developer’s Guide 127

CHAPTER 3 AIF UTILITIES

Resetting Cascading Menus

The following AiF sequence resets menu i.e. clears the menu set in the menu set number SN from
the PCs memory.

ESC[=2;SNI
Where:
SN Is the menu set number from 1 to 50.
This sequence need only be used if the application wishes to reload a completely new set of
cascading menus into the same menu set number.
Loading Cascading Pop-Down Menus

To load a cascading pdpwn menu intdéiostAccess memory on the PC use the following
sequence:

ESC_N1;SNMH1;E1;E2TCCN; ..; En ESC\

Where:

N1 Is the menu number from 1 to 100. Only menu numbers 1 to 8 may be pfes@nte
the menu bar. The first element in these each of these menus will be taken as tt
for that popdown menu.

SN Is the Menu Set number from 1 to 50.

M Is the capital letter '"MAIF code for Menus.

H1l Is the first parameter and will be usedhis Pofpown Menu's heading in the Menu

for menu numbers 1 to 8 only. For all other menus, this is the first menu elemen
E1l..En Are the menu elements, up to 20 perBown Menu.

TC Is the cascade tag character indicating that if this eleseiatted by the user a
cascaded menu will be opened. The default tag character is a split vertical bar (

CN Is the menu number of the cascaded menu. This menu should itself be loaded v
menu number.

Note: menu heading and element &wihgs should not contain sernlons (interpreted as

element delimiters). Nor should they contain control characters which will corrupt the menu text.
Each menu may be loaded individually by addressing it by its menu number. In other words, menus
can bedynamically reconfigured to suit the application's requirements.

128 Developer’s Guide

AIF UTILITIES CHAPTER 3

Example

Cascaded menus are "pointed to" within the text of any menu element by suffixing the text with a
cascade tag character followed by the number of the menu to be cascaded tol&or examp

ESC _1; 1M First Menu ; 1st Element ; 2nd Element | 16 ESC \
This AiF sequence will load a menu ldstAccesas menu number 1 in menu set number 1 with
a menu heading of "First Menu" and with two menu elements "1st" and "2nd". The second
elementwhen selected by the user, will cascade into menu number 16 allowing the user to select a
further menu element from this cascaded menu. Needless to say, menu elements in this cascaded
menu may themselves cascade into other menus, and so on.
Activating Cascading Menus
Use the following AiF sequence to activate theéd®am Menus for user interaction:
ESC[=22;SN;m;e;Ylh
Where:
SN Is the menu set number.
m; e Isthe path to a tefevel menu or the lastlected menu element.

Y1 Is the row number on which the menu bar will be displayed (i.e. between 1 ar
current screen depth). Defaults to 1.

This sequence will run the current menu set nuaibetarting at tofrevel menu 'm’, element 'e'.

If the "m ; e" parameters are set to "0;0" thestAccesautomatically activates the menu at the

last ‘remembered’ menu position and redisplays the menu set through to the last selected option
(within cascades if appropriate). If these are set tori@;Biisis the first time the menu is

invoked, then the option in menu 1, element 1 is highlighted when the menu is activated.

When the cascading menus are activated they appear over the existing screen. As the user moves
through the menusjostAccessefreshes the underlying screen instantaneously.

Developer’s Guide 129

CHAPTER 3 AIF UTILITIES

Getting a Menu Response

AiF PopDown Menus allow a user to move through them using the up, down, left and right arrow
keys. The Home and End keys will move the higbbkgho the top and bottom of a PBown

Menu list. To select a menu option, the user presses the Enter key when the highlighted element is
the required option. Pressing the ESCape key at any point allows the user to exit frem the Pop
Down Menus.

HostAccess AiF handles all of the menu movement and underlying screen refreshes without any
intervention or additional code on the host system. Once a user selects an option, AiF will send the
full menu path for the selected menu number and the element nuthbdrast system. Itis a

simple matter for the host application to interrogate this response and determine which option the
user has chosen.

Cascading Menu Response Format

The Cascading Menu response from AiF takes the format
<STX> exit_key <CR> Mn,En .. Mn,En <CR>

Where:

<STX> Is a special Start of Text character (ASCII decimal value 002). This chars
indicates the start of the menu response string and enables the applicatic
discard any typeahead input that could leee sent before the response str
itself.

exit_key Is the Exit Key mnemonic in the AiF Keyboard Stacker format (as define
DOS Keyboard Stackealso see notes on Loading Exit Keys).

<CR> Is a carriage return (ASCII decimal value 013).
Mn Is thenumber of the option selected and is a single digit number from 1 tc
En Is the menu element number of the option selected and is a two digit nun

from 01 to 20.

The full menu path for cascaded menus is returned in the form of pairs of mesmemd el
numbers. Each pair of numbers is separated by a comma.

If the user hits the ESCape key while in the menus, the menu number and element number are both
returned with a value of zero.

130 Developer’s Guide

AIF UTILITIES CHAPTER 3

Closing Pop-Down Cascading Menus
Use the following sequences to close theD@eam Menu:
ESC[=22]
closes the currently open Fdpwn Menu.
When the Pofpown Menus are activated they appear over the existing screen. If anether Pop
Down Menu had previously beetivated, it would have been closed by the activation of the

current menu. In other words, there is no concept of a "stack” of op&o®RopMenus and
applications should only need to issue one close menu command.

A close menu sequence must be sefbstAccesbefore the application can correctly update the
underlying screen. If the menu is not closed, the screen update may appear within the "window"
opened for the currently active Hbpwn Menu's element list.

Note: A simple form of horizontally scrolling menus may be simulated by using the row number in
combination with menu number 1 to 8 without anydmvpn menu elements.

Developer’s Guide 131

CHAPTER 3 AIF UTILITIES

Using Selection Boxes

Selection boxes provide another menu systhin WostAccess AiF. They give applications the

ability to present the user with a scrolling window over a list of menu elements. The user may select
any element within this list, as well as being able to rapidly scroll or page up/down this list. A
Seletion Box may be "poppeg" at any screen position and may optionally appear over or

alongside other Selection Boxes orgmpn menus, open windows, and so on.

The AiF sequences that can be used to control Selection Boxes are detailed in the following
sections.

Resetting Selection Boxes

The following AiF sequence clears the Selection Box set i@Mnietio 50) from the PC's
memory.

ESC[=24;SN|
This sequence need only be used if the application wishes to raigalétalgonew Selection Box
into the same selection box set number.
Loading Selection Boxes
To load a Selection Box itt@stAccess memory on the PC use the following sequence:
ESC_SN; Y1l;X1;DT;BT;MT; MWSHL1;El;E2.En ESC\
Where:
SN Is the selection box set number from 1 to 50.
Y1 Isthe start row for display.

X1 Isthe start column for display. If both x1 and y1 are set to O (zero) then the sele
box is centred on the screen if no other selectiompbpxlown menu or window is
open ; otherwise, the selection box is positioned to the right of the menu or wint

DT Is the depth of the Peldp menu (number of rows in the box). Defaults to the nurr
of elements in the selection list, or 20 if there are tman 20 elements.

132 Developer’s Guide

AIF UTILITIES CHAPTER 3

BT Describes the box type:

: No border.

: Single line border.

: Double line border.

: Single line at top and bottom, double at sides.
: Double line at top and bottom, single at sides.
32 : Do not clear screen behind mieoxt

64: Shadow menu box.

128 : Explode menu box

A WNEFLO

The last three values for BT are additive, e.g. a single line bordered menu box that is exploded and
shadowed has a BT valud @8 (1 + 64 + 128).

MT Describes the menu type as: normal (0) or Novell shdayfl)

MW Is the maximum width of the Selection Box. Defaults to the width of the longe
element.

S Is the letter 'S', AiF code for ROp menu (Selection Box).

H1 Is the Selection Box heading. If no heading is required this should be null.

E1..En Are menu elements, separated by-selons';".

HostAccesallocates up to 32K of PC memory for Selection Box elements within each menu set. If
the average length of each element were 40 characters, this memory could contain over 800
elements. Applicatis developers should be cautioned against presenting the user with large
numbers of elements. Users needing to select element 622 will not enjoy scrolling through the
preceding 621 elements nor waiting for this list to be sent to the PC over a commsuimikhtio

Developer’s Guide 133

CHAPTER 3 AIF UTILITIES

Activating Selection Boxes
There are two AiF sequences which can be used to activate selection boxes.

Use the following sequence to activate a selection box for user interaction within a window
automatically szl by AiF:

ESC[=23;SN;Enh
Where:

SN Is the selection box set number.

En Is the start menu element number. If set to 0, the menu element highlighted is th
selected by the user, or menu element number 1 if this is the first Setectien box
has been activated.

This sequence tells AiF to size the width of the selection box automatically basec
the longest menu element or using the DT and MW parameters as specified in tf
selection box load sequence. The selection box ésl dedrthe underlying screen

instantaneously restored, once the user has made a selection and exited the sel

To activate a selection box within a previously opened window use the following sequence:
ESC[=24;SN;Enh
Where:
SN and En Areas defined above.

When using this sequence, it is the host application's responsibility to cl
optionally clear) the window within which the Selection Box is activated.
activation sequence is also useful when an application needs tBetettoa
Box appear on the screen within a window with a heading and/or footing
where the window is used to determine the menu's width regardless of t
maximum menu element width.

134 Developer’s Guide

AIF UTILITIES CHAPTER 3

Getting a Selection Box Response

AiF Selection Boxes allow a user to scroll up and down the menu using the up and down arrow
keys. The Home and End keys move the highlight bar to the top and bottom-tfpaNReu.

To select a menu element, the user presses the Enter kaidogxat\key) when the element is
highlighted. Pressing the ESCape key at any point allows the user to exit from the Selection Boxes.

Once a user makes a selection, AiF sends the selected Element number to the host system. Itis a
simple matter for the Bbapplication to interrogate this response and determine which element the
user has chosen.

The Selection Box response from AiF takes the format:
<STX> exit_key <CR> En <CR>
Where:
<STX> Is a special Start of Text character (ASCII decimal value 002).

exit_key Is the Exit Key mnemonic in the Keyboard Stacker format (see DOS Keyl
Stacker on padé34and notes on Loading Exit Keys on pHg@.

<CR> Is a carriage return (ASCII decimal value 013).
En Is the number of the menu element selected.

If the user hits the ESCape key to exit from the selection box, the element number is returned with
a value of zero.

Closing Selection Boxes
Use the following sequences to clbseselection box:

ESC[=23]
Closes the currently open selection box.

When the selection boxes are activated they appear over the existing screen. If another selection box
had previously been activated, it would NOT have been closed by the auftivetionrrent
selection box.

In other words, there is the concept of a "stack” of open selection boxes and applications can have
any number of selection boxes displayed on the screen at any time. Obviously, applications should
issue a close selection bormmand to close each of the opened selection boxes.

Note: A close selection box sequence must be sdostéccesbefore the application can

correctly update the underlying screens. If the selection box is not closed, the screen update may
appear witin the "window" opened for the currently active selection box's element list. In addition,
an open selection box must be closed before bdoagdes with a new list of elements.

Developer’s Guide 135

CHAPTER 3 AIF UTILITIES

Example

The following pseudcode will open a Selection Box (in selebbarset 1, after first clearing it)

starting at column 10, row 5, 3 rows deep and return to the host the number of the element selected
from a list of 6 choices. The Selection Box would also be framed with a single line border,
shadowed and have a headirfhoose Option".

options_list = 'Choose Option;1st option;2nd Option;3rd
Option;4th Option;5th Option;6th Option'
send to PC ESC '[=24;1I

send to PC ESC'_1,5;10;3;65;0S' options_list ESC ' \'
send to PC ESC '[=23;1;1h'
loop until STX (ASCII dec 002) fo und in user_input do repeat

get menu_choice

if menu_choice equals 1 then

send to PC menu_choice 'st option selected'
if menu_choice equals 2 then

send to PC menu_choice 'nd option selected'
etc. to process each choice, as appropriate.

No consideration hdmen given to loading and interrogating which Exit Key was used by the user
to exit the Selection Box, nor to colour configuration and so on.

Notes: Positioning of the Selection Box can be automatically adjusted to take into account an
active Menu (eiéln PopDown or another Selection Box) by specifying special values for the Y1

and X1 parameters in the Load Selection Box AiF sequence. If these parameters are set to 0 (zero),
HostAcceswvill attempt to "best" position the Selection Box to the currelgbtesd option in the

active (last displayed) Menu.

If either of these parameters is 0 and there is no other menu active, positioning is centred on either
the column or row (or both) in the currently open Window (or screen).
Using this feature it is podsileffectively to cascade Selection Boxes frorb&®ep menus.

136 Developer’s Guide

AIF UTILITIES CHAPTER 3

Using Field Input

Processing user keyboard inputs can slow down host applications. This can be aggravated by the
need for the host techoeach key entered by the userchvban also strain the capacity of
networks as each character is transmitted within its own "network packet".

Users accessing the host through public service networks at slower line speeds often suffer longer
response times because of this need to echatearacter. Developers are burdened with having

to write complicated, single character, terminal type dependent input routines to provide users with
any form of editing other than backspace.

HostAccess AiF Field Input facilities change all of this.

Youcan now implement a fast, sophisticated field input system within applieatitsstill
being able to maintain complete control from the host application. Field input can be optimised to
use the PC's processing power with generally no more aottinpkeof code.

How AIiF Field Input Works
There are basically three AiF sequences that can control user's input from within a host application.

Each AiF sequence simply infoldustAccesshat the user is about to start input. At this point
control is pssed tblostAccessThe user then inputs one or more keystrokes and has access to all
of the standard DOlke facilities for amending, inserting, deleting and moving through the input
text.

When the user presses a valid exit key, the contents of thimpiseare sent back to the host.

Field Input Types
Three types of field inputs are supported by AiF:

Line input is the simplest field input type and works on the principle of "cutting" a specified
number of characters out okthcreen from a specified cursor position.

Box input enables user inputs to take place within a fixed width single line box and for the box to
be enhanced with box attributes (such as frames, colour).

Window Editor gives applications the ability to definariable width window over one or more
input rows and for the window to be enhanced with window attributes (frame, colour, titles). This
effectively gives users ansaneen "mini" word processor.

Each of these types is documented in the followingrsectio

Local processing of user's keyboard inputs may be controlled by host applications if they need a
typeahead facility. Please see Typeahead Mode, 4&&foageore details.

User Keys Available for Field Input

The keys available for the user to move around and modify input text are the same for all field input
types. Users may move around text by using the arrow keys. Overwrite mode is indicated by a solid

Developer’s Guide 137

CHAPTER 3 AIF UTILITIES

(block) cursor. Insert modeinglicated by an underline cursor. Pressing the Insstt key will
toggle between insert and overwrite modes.

The contents of the input field are always returned to the host application. It is the host
application's responsibility to determine if the fias been changed and how the user finished
(exited) the field inputiostAccesseturns to the host the field's contents and an exit key. If exit
keys are loaded, you can use these to exit the field input and return to the application control.

Otherwisethe user may press the ESCape key to exit without changing the field's contents. In Line
and Box input types, carriage return or ESCape exits field input and sends the text to the host
application. If the user is within the Window Editor field input tigpe pressing F1 exits field

input and sends the text back to the host application.

If the user is within Line or Box input and starts to key input without moving along the text, then
the text displayed is cleared and the user's input completely tteplaldefield. This facility is
optional and may be controlled by the host application.

A number of local editing keys are also available for use while within field input. These may be
Windows, WordStar or WordPerfect compatible, depending upon whicthenasier has
configured via the Editing... option of the Configure menu.

Field Input - Exit Keys
All the AiF Field Inputs allow users to exit input by pressing a host application defined exit key.

If these exit keys are nafthed, a user can indicate acceptance of the input by entering a carriage
return (but note that within Window Editor the F1 key is the default "acceptance" exit). The
ESCape key may be pressed to exit and indicaaegeptance of the input. However,

corfigurable exit keys give host applications immense flexibility in the way in which they handle
user inputs.

For example, using defined exit keys it is possible for an application to provide a-keiSapt
Function Key 10) for any field input anyweharan application. The user is able to press F10 to
ask the application to display help and then return immediately to the field input to continue
entering data.

In addition, exit keys can be also used by applications as "inputiéglexits. For exnple,

pressing F2 could always cause the application to process the same event, regardless of where the
user is within the current field input. This provides for very fast manoeuvring and selections of
actions once the user is familiar with the exitdediysed by the application.

138 Developer’s Guide

AIF UTILITIES CHAPTER 3

Loading Exit Keys

Host applications may load application specific exit keys as required by using the AiF sequence
below.

ESC _ Z exit_keys ESC\
Where:
4 Is the capital letter ZAiF code for exit keys.

exit_keys Are the exit keys that the application will recognise when returned from th
field input. These are as defined in DOS Keyboard Stacker d8fgage

Field Input Response
The user's respsa is returned to the host application in the following format:
<STX> exit_key <CR> input_str <CR>

Where:
<STX> Is the special start of text character with ASCII decimal value 002.
exit_key Is a two character alphanumeric mnemonic for the exit key lesgetthe

field input. The mnemonics returned are the same as those used when
the exit keys.

If you specify single characters as exit keys, these will be returned as two characters. For example, if
X' is specified as an exit key, it will retlatea space followed by the letter X (i.e. * X).

<CR> Is a carriage return character with ASCII decimal value 013.

input_str Is the string as input by the user. Note that the response from Window |
is expanded to return each line of the windovs@gaaate inputplease see
Window Editor on pag&44

Example

To loadHostAccessvith the exit keys required for Field Input so that only Carriage Return,
ESCape and the Function Keys F1 and F2 are permitted, use the following AiF sequence:

ESC _ZF1F2ESC\

Terminal Echo

You should turn terminal echo off befgedting the response from AiF Field Input, so that this is

not displayed on the user's screen. You can use an AiF sequence to suppress host echoed output,
instead of the host system's equivalent command. For more details on this please see Host Echo
On/Of f on pagel56 Terminal echo should be turned back on once the menu response has been
input.

Developer’s Guide 139

CHAPTER 3 AIF UTILITIES

Exit keys are common between the AiF Menus, Field Inputs and responses from Imagé displays
is the application's responsibilityrtaintain different exit keys between menus, field inputs and
Image displays, if required.

Line Input

This sequence enables host applications to define a fixed length field on part or all of one row on
the screen for user input. Any telkeady on the screen within that field will be taken as the initial
input text by the user. The user can modify this text before sending it to the host application.

ESC[=25;FL;VL;SMh
activates line input at the current cursor position.
Where:

FL Isthe integer field length (as a number of columns on the screen) from which tc
text from the screen. It also defines the maximum number of characters that me
input.

VL Isthe validation parameter as any one of the following:

0 No validatiom (any input accepted).

Integer input only.

Numeric input only.

Alphabetic input only.

Alphanumeric input.

Hex input.

Hidden input (input is echoed as # characters: useful for entering passwort

SM Is the start mode code for taetion to be if the first user input character is not an
editing action, i.e. is a character to enter into the field. This parameter should bt
assigned as:

0 No special action for first user input.

1 If the first user input character is not an ediivagacter, clear the field first.

The application must place the cursor at the (column, row) position from which input is to take
place immediately BEFORE sending this AiF sequence.

o O~ WN B

140 Developer’s Guide

AIF UTILITIES CHAPTER 3

Getting a Line Input response
Lineinput responses from AiF take the format:

<STX> exit_key <CR> input_str <CR>
Where:

<STX> Is a special Start of Text character (ASCII decimal value 002).

This character indicates the start of the field input response string and en
the applicatioto discard any typeahead input that could have been sent b
the response string itself.

exit_key Is the Exit Key mnemonic in the AiF Keyboard Stacker format (as defined

DOS Keyboard Stacker on pd@d— also see notes twoading Exit Keys on
pagel39.

<CR> Is a carriage return (ASCII decimal value 013).

input_str Is the text as input by the user.

Application Examples

Applications tend to use the same start column for multiple fields, tptsglantents of the
fields and then allow the user to modify a field by skipping up and down lines.

As each field is input the application redisplays the contents, permits the user to input new text and
then displays the new field again.

With this AiF sguence, there is no need to do this. The application displays the field contents,
places the cursor at the start of the field and switches AiF line input on. Redisplay of the field's text
is unnecessary as the text the user sees on the screen is whatdeas to the host application.

Note: Trailing spaces are trimmed from the input before being sent back to the host application.

Developer’s Guide 141

CHAPTER 3 AIF UTILITIES

Box Input

Box Input enables host applications to pop up an Input Box anywhere on the screen and request
user input. This input may be optionally validated within the PC before being sent back to the host.
Validation can be specified to optionally restrict the user's input to numeric only, alphanumeric,
hidden (for passwords) and so on.

User input is NOT comisiined to the box's width. Text input may exceed the width of the box and
AiF will indicate that additional text exists by displaying appropriate arrow symbols. The maximum
length for the text that can be input should be specified by the host application.

The Input Box itself may be enhanced with selected frame styles and/or title. Once the user has
completed input, the box may optionally disappear and the underlying screen be immediately
restored.

Box input provides an especially elegant adjunct tonlgaustir input from AiF pepp and pop
down menugHostAccessisers will probably already be familiar with the Box Input style as it is
used withirHostAccess own configuration menus.

Box AiF Sequence
The following AiF sequence enables you to defimgarbox.

ESC _Y1;X1;FL:;BS;BT:VL;SMJtext; title ESC\
Where:

Y1l Is the top lefthand row.
X1 Is the top lefthand column.

Setting X1 and Y1 to 1 displays a box starting at the tbpddftorner of the screen.
Setting X1 and Y1 todisplays a box starting at the current cursor position (or curr
selected menu element).

FL Is the maximum field input length.

BS Is the width of box. This may be less than the field input length. If zero, the maxir
field input length is used.

BT Describes the box type:

No frame.

Single line frame.

Double line frame.

Single line at top and bottom, double at sides.
Double line at top and bottom, single at sides.
64 Shadow window.

128 Explode window

A WOWDNPEFEO

142 Developer’s Guide

AIF UTILITIES CHAPTER 3

VL

SM

J
text

title

The last two values fBT are additive, e.g. a single line framed box that is explod
shadowed has a BT valud g8 (1 + 64 + 128).

Is the validation parameter as any one of the following:

0 No validation (any input accepted).

Integer input only.

Numericinput only.

Alphabetic input only.

Alphanumeric input.

Hex input.

6 Hidden input (input is echoed as # characters: useful for entering passwor:

Is the start mode code for the action to be if the first user input character is not
editing action, i.e. is a character to enter into the field. This parameter should b¢
assigned as:

0 No special action for first user input.

1 If the first user input character is not an editing character, clear the field fir
Is the capitdktter 'J": AiF code for Input.

Is the input text to be displayed when the Input Box is activated and modified by
user (may be null).

Is the heading text for the Input Box (may be null). If a box type of 0 (no frame)
the title igdiscarded.

a b wN PP

Getting a Box Input Response

Box input responses from AiF take the format:

<STX> exit_key <CR> input_str <CR>

Where:
<STX>

Is a special Start of Text character (ASCII decimal value 002).

This characténdicates the start of the field input response string and enabli
application to discard any typeahead input that could have been sent befol
response string itself.

exit_key Is the Exit Key mnemonic in the AiF Keyboard Stacker format (as defide&

<CR>

Keyboard Stacker on pdifil- also see notes on Loading Exit Keys on p2ge
Is a carriage return (ASCII decimal value 013).

input_str Is the text as input by the user.

Once the usdras exited from the Input Box this box is automatically cleared from the screen and

the underlying screen restored immediately.

Developer’s Guide 143

CHAPTER 3 AIF UTILITIES

Box Input Response Examples

To popup an Input Box on row 12, column 15 of the screen to prompgéhéouenter a 50
character, alphabetinly surname within a box 25 characters wide, an application should use the
following AiF sequences:

send to PC 'ESC[=12;15;25;50;1;3;0;J;Enter Surname ESC \!

The above Input Box has a single line frame with emgeddEnter Surname”. The maximum
input length is 50 characters within a box width of 25. Also note that the box will be cleared from
the screen when the user's input is complete.

To prompt the user with an existing surname, say "Harvey" (that capteammcamended by
the user), simply use the sequence below:

send to PC 'ESC[=12;15;25;50;1;3;0;JHarvey;Enter Surname ESC \!

To prompt the user for the same surname after, saydawopnenu or Selection Box option
"change surname" has been selectedhe sequence below:

send to PC 'ESC[=0;0;25;50;1;3;0;JHarvey;Enter Surname ESC \!

Note: both the Y and X cordinates of the box have been set to 0 (zero). This means that
HostAcceswill position the box at the current curseoodinates. Where thisdone from an AiF

menu, the current cursor position is taken as being one row below the highlighted element with the
start column at the centre of the element. This positioning occurs automatically but may be
constrained by factors such as the widtheoiinghut box and proximity to the edges of the screen.

Trailing spaces are trimmed from the input before being sent back to the host application. Box
input limits the entry to just one line on the screen. Applications requiring multiple lines of input
shoud user the Window Editor AiF sequence described in Window Editor.

Window Editor

The AiF Window Editor enables host applications to pop up an input window (of one or more
lines) anywhere on the screen and request user input. Thayusemnoeuvre around the text
within the window using all of the available PC based keys to insert, delete and add text.

User input is constrained by the window's width and depth.

The input window itself may be enhanced with selected frame styletitlewiforaccordance

with AiF Windows. In other words, the host application should normally open an AiF window

before activating the Window Editor. Likewise, once the user has completed input, an AiF sequence
should be used to close and optionally cleanpiut window.

144 Developer’s Guide

AIF UTILITIES CHAPTER 3

The Window Editor is particularly suited to applications that need to capture user notes. It, in
effect, acts as a very fast local word processor with the major benefit that the user's notes are only
sent to the host once the user isfeadisvith the text that has been entered. This has considerable
performance advantages for applications running over networks or asynchronous lines.

ESC[=26h
switches the window editor on, using the text in the currently open window.

Getting A Window Editor Response
Window Editor responses from AiF take the format:
<STX> exit_key <CR> inp_strl <CR> .. inp_str NN <CR><STX><CR>

Where:

<STX> Is a special Start of Text character (ASCII decimal value 002).
This chaacter indicates the start of the field input response string and
enables the application to discard any typeahead input that could hav:
sent before the response string itself.

exit_key Is the Exit Key mnemonic in the AiF Keyboard Stacker format (as defi
DOS Keyboard Stacker on pd@d— also see notes on Loading Exit Key
on page 39.

<CR> Is a carriage return (ASCII decimile®13).

inp_strl .. Is the text input by the user for each line within the input window, whe

inp_str NN is the number of lines in the window.

It is important to note that the response from Window Editor is terminated with another STX
character. Tdhadvantage of this is that null trailing lines are not returned to the host. Applications
should therefore always check for the trailing STX character and use this to identify the end of the
user inputs.

Developer’s Guide 145

CHAPTER 3 AIF UTILITIES

Window Editor examples

To popup an input window on row 18, column 10 of the screen to prompt the user to enter up to
4 lines of input text with each line not exceeding 35 characters, an application should use the
following AiF sequences:

Open window and add title first:
send to PC 'ESC[=18;10;21;44; 193;0;1;33;41u’
send to PC 'ESC_WInput text WindowESC \!
Activate Window Editor:
send to PC 'ESC[=26h'

Look for the start of text delimiter indicating user has finished input:

loop

get user_response
until 1st character of user_response eq ASCII 002
repeat

The exit key should be interrogated at this point:
exit_key = 2nd character onwards of user_response
Now get the user text from the input window (input this into an array called user_text):

ctr=1

loop
get user_response

until user response eq ASCII 002
user_text(ctr) = user_response
ctr=ctr+1

do repeat

Finally, close the window leaving it visible on the screen:
send to PC 'ESC[=1V'

Notes: Trailing spaces are trimmed from the input before being sent badiosi tpplication.

If exit keys have not been loaded (see Loading Exit Keys diBgaben the ESCape key and the
Function key F1 are available as exit keys by default.

146 Developer’s Guide

AIF UTILITIES CHAPTER 3

Save Environment

Host applicatioprograms that have been designed to interface with other (possibly unknown)
applications which might also be using AiF facilities may experience "conflicts of AiF interest" with
the other applications, such as loading AiF menus into the same menuesethanding but not
resetting screen colours and so on.

These conflicts may be avoided by ensuring that applications "save" their AiF environment at an
appropriate point by using the AiF sequence in the following sections.

Push environment

ESC[=99p
Pop environment
ESC[=99¢

Push environment will essentially save everything except backpages for the currently active session
including:

The current screen.

The screen mode (row & column settings).

AiF windows.

Screen attributes.

AiF stacks and slotsenus and selection boxes.

The screen's background fill character and attribute.

Session dependent attributes saved include:

> > >» > > >

>

Cap lock and num lock status.

Mouse status.

Function keys, AiF exit keys and key changes.
Current emulation in use.

> > >

Application Environment Examples

Applications providing gateways out to other applications that might themselves make use of AiF
should save their own environments before shelling out to the gateway. Obviously, the application
would want to restore its original environhaace control has been returned from the gateway.

Notes: You should ensure that the "environments" saved stack is popped in the correct order to
properly restore environments for earlier programs. Saving environments can consume sizeable
chunks of théC's memory depending upon the number and size of menu and selection boxes
loaded, the number of screens pushed on to the screen slots stack etc.

Developer’s Guide 147

CHAPTER 3 AIF UTILITIES

Display Optimisation

Users are highly sensitive to the time an applicatisridgda@nt the screen. If the user is using a
diatup link or a network, it can take several seconds to paint a complex screen. These types of
delays are often more critical when a user is stepping through applications screens than when
waiting for a respse to a complex transaction.

HostAccess Display Optimisation features address this problem by providing programmable
facilities to dramatically speed up screen updating.

The following sections describe how host applications can make use of theréskFc izt

SLOTs, FORMs and FREEZE ON/OFF. All of these features have been designed to minimise the
time, or perception of the time, taken to display host application screens. In many cases, this time
can be reduced by more than a huntbigd

Overview of Features

SLOTs make use of the PC's memory to save and restore screerthimagéelse fastest method

of redisplaying an application screen. Screen images may be pushed on to a stack in the PC's
memory and popped off the stack as required by theasippli Screen display times are virtually
instantaneousthe user no longer needs to wait for 2 or more seconds while the host system sends
2,000 or more bytes to redisplay the screen.

FORMs is another means of saving and restoring screen imagesagrtextisghich are stored
on the PC's disk drive instead of within memory.

FREEZE ON/OFF is a very clever technique for improving the user's perception of screen display
times. If an application turns FREEZE ON, builds the screen (this is done in thg ofeher

PC and is not visible to the user) and then turns FREEZE OFF, the effect is one of instant screen
display.

148 Developer’s Guide

AIF UTILITIES CHAPTER 3

SLOTs

AiF SLOTSs provide the facility to store any screen image into the memory of the PC. You can
address these images a® & numbered from 1 to 50 or you can push and pop images from a
SLOT STACK. When restored to the screen, the image will appear before the user literally instantly.

Using the SLOTSs feature, you can add a major enhancement to your application in minutes. This is,
the ability to call any other application from anywhere within any application. Biotkogess

to save the current screen image to a SLOT, your émploza go off and execute other

programs. Upon returning to your application, you simply rétpstatcesso redisplay your

screen image from that SLOT instantly.

SLOTs AiF Sequences
ESC[=Np Save the current screen image to slot number N.
ESC[=Ng Restore slot N to the screen.

Where:
N Is a SLOT number from 1 to 50.
ESC[=p Push the current screen image on to slot stack.
ESC[=q Pop screen image from slot stack.

Note: the AiF Sequenc&SC [= 99 pandESC [= 99 gare used by the PUSH/POP
environment

SLOTs Examples

At any input point the application should allow the user to invoke another application and then, on
quitting that application, return to the original with the screen exactly as the user left it (including
cursor position, colowttributes, etc.). Using AiF's SLOT feature, the Host application can issue
the following AiF sequences:

if input is 'run another application' then
PUSH SLOT send to PC 'ESC[=p'
run ‘another application’
return from other application
POP SLOT send to PC'ESC[=q'
end if
This 'code’ pushes the current screen image into the SLOT STACK and pops it back as soon as the
user returns from the other application.

The screen image will be restored instantly, with all of the screen attributes, colasa and
position set exactly as the user left them.

Developer’s Guide 149

CHAPTER 3 AIF UTILITIES

Using Push and Pop SLOTSs applications can call other applications indefinitely with each
application pushing and popping its own screen images without conflict with previous applications.

An applicationrequently makes use of a data entry screen. Rather than sending this screen to the
PC each time it is required, the application could save it in a numbered SLOT at the start of the
application.

screen_nbr=1
send to PC data_entry_screen
send to PC 'ESC[=' screen_nbr 'p’

When the data entry screen is next required, the application only needs to send 'ESC[=' screen_nbr
'g’ to instantly redisplay this same screen. The screen image will remain in the Slot for the entire
HostAccessession, until overwrittely Bnother screen or until the slots are cleared.

The SLOT STACK Facility

If there is a risk of applications clashes when using the numbered SLOTSs, developers are
recommended to make use of the SLOT STACK facility. As usersatween applications (or
areas within an application) and the application knows that the user will return to the previous
screen, it is simpler to push and pop the required screen images from a SLOT STACK.

Each SLOT (screen image copy) requires apptelyii of the PC's memory. There is no limit

to the number of screens that may be pushed into a SLOT STACK other than the size of available
memory in the PC. In practice, applications that push screens down more than six levels will tend to
lose the usduser's memory's are limited too!).

Push SLOT will save the following screen related information together with a copy of the screen
image:

>

Cursor position.

cursor status (shape, on/off).

Screen attributes (colour, flashing, etc).

Background fill charactand attributes (as used for clears, clear screen, end of line, etc).
Wrap and field modes.

Note: If your application needs to save more than the current screen and related information, see
Save Environment on pabé7

> > > >

150 Developer’s Guide

AIF UTILITIES CHAPTER 3

FORMs

HostAccesgnables you to store any host output on the PC's Floppy or Hard Disk. This output can
be a whole screen, partial screen, AiF menus or selection boxes, or anything that you might output
frequently. The output is stored in any fipddiorm numbered from 1 to 255. Requesting

HostAccesto display a form results in the output being processed at high speed. Whether the user
is running at 1200 8200 baud, forms will always appear at the same fast speed.

Note: Characters with an AS®blue greater than 127 can be stored in forms, thereby
accommodating special characters required for some languages, such as French.

FORMSs AiF Sequences
Use the following sequence to write to a FORM file.

ESC[=Fn; Fv;1sTEXTESC[=s
Use the follwing sequence to process from a FORM file.

ESC[=Fnr
Where:
Fn Is the Form Number as an integer from 1 to 255.
Fv Is the Form Version as an integer from 1 to 255. The *;1' is mandatory.
S Is the lowercase letter AiF code for FORMSs.

TEXT Is thehost output to be processed (and usually displayed on the screen). This
contain any valid screen display sequence (for example, cursor addressing, a
setting) including other AiF sequences (such as FREEZE ON/OFF, load AiF
Selection Box, etc.)

Note: This AiF sequence is terminated byBBE [= ssequence and not the standard AiF
terminator. This is because other AiF sequences can be stored within a form.

FORM files

The default DOS file where FORMs are saved to and restored talled HOST.FRM in the
directory in whiclHostAccesss running.

To specify an alternative FORM file, use the following sequence:

ESC _ FDOS_form_file_name ESC\
This DOS_form_file_name may include a full DOS pathname.

Developer’s Guide 151

CHAPTER 3 AIF UTILITIES

To clear the currently agi*fORM file of FORMSs use the following sequence:
ESC[=s

When a Form is created, it is given a version number of 1. Each time a Form is updated, this
version number is incremented by 1.

To request the version number from a FORM file, use the folldikFisgquence:

ESC [=Fv; 1rrequests version number for FORM number Fn.
This will return to the host the following response:

<STX> <CR> Fn <CR>

Where:
<STX> Is a special Start of Text character (ASCII decimal value 002).
<CR> Is carriage return (ASGlécimal value 013).
Fn Is the FORM version number as an integer between 1 and 255. If a versic

number of O (zero) is returned, this indicates that the last specified Form |
does NOT exist.

FORMs Examples

Applications tend tbuild screen images by combining a number of variables into one and then
displaying this consolidated variable. To save whole or part of any variable that is to be displayed,
host applications simply need to insert this variable into an AiF sequereca QR

For example, to save and restore a three line portion of a screen display into and from the FORM
numbered 22 in the FORM file HELPTEXT.FRM (inHustAccesslirectory), use the following
code.

Assign FORM file with:
send to PC 'ESC_F' : 'HELPTEX T.FRM':'ESC \

Build Screen Display item:

screen = time : date : screen.heading
screen = screen : columnl,rowl 'line 1'
screen = screen : column2,row?2 'line 2'

Now save this to PC's disk with:
send to PC 'ESC[=22;1;1s" : screen : 'ESCJ[=s'

152 Developer’s Guide

AIF UTILITIES CHAPTER 3

At any point within the application, the screen can be redisplayed from the PC's FORM file
as follows:

send to PC 'ESC[=22r"

Notes on FORM files
Imagine storing your applications screen images in different files on the PC in different languages.

FORMs are actuallghl in a format that when restored, is replayed thrtagfAccesss if the

characters were being sent from the host applicatitwstAccessBecause this FORM

information is coming from the PC's disk, it is faster than having to send the same screen
information from the host system. However, this does mean that FORMs do need to be compatible
with the Terminal Type currently being emulatétbyAccessin other words, if an application is
running in VT100 emulation mode throtigstAccessany FORMs it are to be displayed must

have previously been saved in VT100 emulation mode.

The number of FORM files is only limited by the available disk space on the PC. There is no limit
to the number of FORM files that may be addressed by AiF FORM sequences.

It isimportant to realise that FORM files may contain any AiF sequence. This enables applications
to store complete Selection boxes and/orPawn Menu structures/selection lists on the PC's

hard disk with obvious performance advantages when it comesptloadienus. Diskless
workstations would simply load such FORM files from the network fileserver's hard disk (say, from
the same DOS directory from whidbstAccessvas invoked). In this environment, the host
application must also manage the FORM fik¢hair version humbers to ensure that they are
present and that they contain the correct menu structures/selection lists. An AiF sequence is also
provided to verify the existence of DOS files.

If you try to read a FORM that does not ekiestAccesfustignores the request. If a FORM

already exists, a write FORM sequence will overwrite it. The maximum size of a FORM is currently
32K, the maximum size of a form file is 64K. If you attempt to write a FORM greater than this size,
it will be truncated, resinlg in a corrupt screen when displayed.

If your screen is corrupted when you display a FORM, check that you had some form of flow
control set when you loaded the form. If, for some reason, you are unable to use flow control,
ensure that there is a detaydur program after sending each FORM toHpetAccessime to

write the FORM to disk.

Developer’s Guide 153

CHAPTER 3 AIF UTILITIES

Freeze On/Off

This simple but effective feature available whoEtAccesgives end users the appearance that
their host machine's performance has been significantly improved.

It enables host applications to temporarily suppress screen outptiv$tdecessvhilst building
a new screen in the PC's memory and then to insédedlye this screen output into view.

Freeze On/Off AiF Sequences

ESC[=1h Will FREEZE the screen.
ESC[=11 Will display data sent during FREEZE.

Currently, most applications display information on a data entry screen one field at a time. If the
hostsystem is slow, the user can actually see each field being displayed, in bursts on the screen.

Imagine being able to see all of this data appearing instantly on the screen. That is exactly what
HostAccess freeze on and freeze off facility providesrB8asknding the first field, you turn
freeze on, all subsequent data sent to the screen is not actually displayed.

After the last field has been output, you turn freeze off. This makes all the changes appear instantly
on the screen. This technique candeel wwhen clearing fields, printing boxes, drawing logos etc.

Notes on Freeze On/Off

When you send the freeze sequenel®stAccessa flag is set telliktpstAccessot to update the

PC screen until the unfreeze code is received. Any data received fiashdfter the freeze

command is processed, will update the screen image and back pages in memory but the physical
screen is not changed. When the unfreeze command is received and the screen image in memory is
used to update the real screen, this witldrainstantly.

When used withlostAccesSLOTS, it can provide the application developer with the facilities of a
multipage terminal. The second page can be placed in a nuddsttedesslot. It is updated

by freezing the screen, pushing the current screen on to the SLOT STACK, pulling the second page
on to the screen, updating it, putting back into its numbered SLOT, popping the original screen

from the SLOT STACK and unfreezing thesnr Yes, that does sound like a lot of processing but
HostAccesss so fast at moving screens between SLOTs and the number of characters that have to
be sent to achieve the above listed functions is so small that this approach is very practical and very
quick.

The use of freeze on/off is often governed by subjective assessments of how the application
screens should be presented to users.

154 Developer’s Guide

AIF UTILITIES CHAPTER 3

One simple means of implementing this feature is to adopt the philosophy that the application
should turn freeze on ingdiately AFTER each user input and turn freeze off just BEFORE each
user input. This tends to make all screen output appear as if it is all instant. But, this can also mean
that on very slow host systems or when the user is accessing the system #myosighvaink

(say at 2400 baud), the application may leave the user with a 'frozen' (blank or unchanging) screen
whileHostAccesss waiting for the screen data and then the freeze off sequence to be sent down
the line.

Many applications have cateredHis type of 'speed problem' by displaying a standard message
such as 'Now processing ... please wait' whenever the user selects an option and the screen
subsequently needs to be changed. Of courséjosiificcess AiF you could now show that
message i@ shadowed coloured box!

As an aid to developers implementing this freeze feature, we have added a-kpgdalTibt

which will immediately unfreeze the current screen image. This can be very useful when your
program forgets to send the unfreeze seguamd you have spent a few seconds watching a blank
PC screen and wondering just what your wonderful new release of software is doing!

Developer’s Guide 155

CHAPTER 3 AIF UTILITIES

Host Echo On/Off

It is useful on occasions to be able to suppress the host system's eghbekhodit- sequence is
available for this.

Esc[=13h Will enable host echo output to the screen.
Esc[=131 Will discard host echo output to the screen.

This will discard any text or cursor movement output from the host. It does not suppress host
output to the system message line.

Examples

This AiF sequence may be used to replace the host ECHO ON/OFF, HUSH ON/OFF
commands. Where these are not known (or are different for different host systems), this AiF
sequence gives applications a consistenanatluppressing and enabling screen output.

Notes: Remember to enable host echo after suppressing it, if you want your users to see anything
on the screen.

This sequence will not suppress any other AiF sequences output by the host, i.e. AiF sequences to
open windows, update the system message line, etc. will still be carried out.

This is not the same as turning the host's echo off since characters are still echoed from the host to
HostAccess

156 Developer’s Guide

AIF UTILITIES CHAPTER 3

Applications Enhancement

Any application is used and viewgdhe user through the screens that the application displays. So
applications should have ‘functional attractiveness'.

Application screens should display screen information as concisely as possible and attract the user's
attention to the correct part oftlscreen, as required.

The following sections show how to improve screens using Box and Line drawing.
Advantages to Developers

Because all ¢fostAccess AiF features are actually processed withstAccessn the PC,
developers using these featurdgaiih substantial benefits in the following areas:

p=

Reduced I/O burden on host system.

Minimal host applications code required to achieve sophisticated screen displays (with
consequent reductions in software maintenance).

Fast implementation of the Ai¢atures within existing and new host applications.
Easy to code and easy to support other (dumb) terminals within the same application.

p=

> >

Box Drawing

Using AiF's Box Drawing feature, application screens can be very effectively gnhanced b
combining boxes and colour. AiF Box Drawing sequences are typically less than 18-bytes long
compare that with the number of characters conventionally required to draw boxes on host
application screens! Boxes may be optionally framed, shadowed afatledex

Use the following sequence to draw a box:

ESC[=VY1;X1;Y2;X2;BT;Al;..;Anx
Where:

Y1l Is the top lefthand row.

X1 Is the top lekhand column.

Y2 Is the bottom righhand row.

X2 Is the bottom righband column.

Setting X1 and'1 to 1 will display a box starting at the toghkerfid corner of the
screen.

If the X1 and Y1 parameters are set to 0, the box will be centred within the curr
active window (or screen, if no window active). The box's dimensions are then
determinedby the absolute values of X2 and Y2.

Developer’s Guide 157

CHAPTER 3 AIF UTILITIES

BT Describes the box type:
0 No frame.

1 Single line frame.

2 Double line frame.

3 Single line at top and bottom, double at sides.
4 Double line at top and bottom, single at sides.
64 Shadow window.

128 Explode window.

The last two values for BT are additive, e.g. a single line framed box that is exp
shadowed has a BT valud @ (1 64 128).

Al- Are optional parameters to set the colour of the box. If not present, the currere
An is used.

Box Drawing Application Examples

To draw an unframed exploding box of dimensions 3,3 to 10,40 with a background colour of Cyan
and a foreground colour of Yellow, use the following sequence:

ESC[=3;3;10;40;128;0;1;33;46x

Where:
3;3;10;40 Are the box ceprdinates.
128; Is the box type of exploding unframed.
0;1;33;46 Are the parameters to assign colours (note the 1; is used to set the high
E:g\r,]\lsr,]i;y bit so that Yellow is generated by an attribute setting of 33, not

Notes: The frame is drawn round a box of the requested dimensions, i.e. area of the screen
covered by the framed box is larger than the requested dimensions. The box is drawn in the
requested colour or, if no colour is specified, the current scragrattoloutes are used.

AiF windows are similar to boxes and should be used if the host application needs the ability to
restrict further output to within the dimensions of the Window (box), without effecting the

underlying screen. AiF box drawing alwpgtatas the underlying screen and will clear the area
"under" the box. To add a frame effect around an area of the screen, without clearing this area, you
can use either an AiF window (with the no clear on open option) or the AiF line drawing sequence
(withthe line ceordinates set to those normally used for a box).

Line Drawing

Many terminal protocols support line drawing characters. However, just drawing a line across the
screen involves sending 80 or so characters to the termdralwTocomplex form would involve

158 Developer’s Guide

AIF UTILITIES CHAPTER 3

several lines of code (especially if trying to cope with merging lines) and possibly thousands of
characters being sent to the screen.

AiF's enhanced line drawing commands enable you to draw complex lines and fraangs with
simple commands that involve sending only a few characters from the host application program.
Lines can be specified as single or doublea@stéccessvill intelligently merge new lines with any
existing lines on the screen, if requested.

Use the fdbwing sequence to draw a line:

ESC[=Y1;X1;Y2; X2;LT;Al;..;Anz
Where:

Y1 s the top lefhand row.
X1 s the top lefthand column.
Y2 s the bottom righhand row.
X2 s the bottom righhand column.
Setting X1 and Y1 to 1 will dravline starting at the top kefind corner of the screen.

If either pair of X1,,X2 or Y1,Y2 parameters are set to 0, the line will be expande
full width of the currently active window (or screen, if no window active).

To drawhorizontéihes make Y1 equal to Y2.

To drawverticdihes make X1 equal to X2.
LT Describes the line type:

0 Single line.

1 Double line.

2 Single line with merging.

3 Double line with merging.

The merging option requests AiF to intelligently merdie¢har frame with any other line
characters it meets or crosses, i.e. adding the appropriate 'T's, crosses, etc.

Al- An Are optional parameters to set the colour of the line. If not present, the curr
attribute is used.

Line Drawing Application Examples

To draw a double line frame of dimensions 3,3 to 10,40 in Yellow on a Black background, use the
following sequence:

ESC[=3;3;10;40;1;0;33;1,;40z
Where:

Developer’s Guide 159

CHAPTER 3 AIF UTILITIES

3;3;10;40 Are the box cerdinates.
1; Is the draw double line option.
0;33;1;40 Are the parameters to set the colour attributes.

To draw a horizontal line from 5,3 to 5,40 (i.e. on row 5 from column 3 to 40), merge with any
existing lines on the screen and use the current screen colours, use the following sequence:

ESC[=5;3;5;40;2z
To draw a horizontal line the full width of the screen (or currently open window) on row 11, use the
following AiF sequence:

ESC[=11;0;11;0z
Note: If the line ceordinate parameter X1 is not equal to X2 and/or Y1 is nat &g¥2, a
‘frame’ will be drawn. There are certain advantages to using this method of drawing frames as
opposed to using the AiF Box Drawing sequence. Firstly, the area embraced by a line drawn 'box'

will be left intact (not cleared as in box drawiegpr@ly, the borders of this line drawn box may
be intelligently merged with other lines on the screen.

System Message Line (Line 25)

Most terminal emulations provide a system message lihesaihccess emulations will suppor
these. For those that do not support this feature, for example VT100, there is an AiF sequence to
provide this facility.
ESC[=CI; Al; ...; An w message CR
Where:

Cl Is the starting column number.

If Cl is absent or zero, the system message tileared and the column set tc
Otherwise the line is left unchanged and the column set as specified. Chz
are displayed until a carriage return is received or until the last column he
written to.

Al .. An Are parameter settings to chatigecolour attributes on the System Messag
line. If not specified, then the current screen colours are used.

160 Developer’s Guide

AIF UTILITIES CHAPTER 3

Message Is the text required on the System Message Line.

CR Is carriage return to terminate output to the System Message Line.

System Message Line Application Examples

To display the message MAIL WAITING in White text on a Cyan background at column 20 on the
System Message Line, use the following sequence:

ESC[=20;0;1; 37; 46 w Mail Waiting CR
The colour parameters are 0;1;37;46nasthe AiF code for the System Message Line sequence.
To clear the System Message Line, use:

ESC[=wCR
Notes: While in System Message Line mode, message text can only consist of standard displayable
characters. Nedisplayable codes will terminateSiistem Message Line.

If the HostAccesstatus line is being displayed, it is switched off. The System Message Line is held
in memory and redisplayed when the status line is switched off, i.e. the user may toggle between the
status line and the System mgsdine.

Application control of the system message line display is how available through an additional AiF
sequence documented in the following section. This enables applications to restore the status line
without the need for the user to redisplayttitesline (via the Configure menu).

System Message Line Control

Full control of the System Message Line display can now be achieved by host applications using the
AiF sequences below.

HostAccess own status line caraddly be restored as required by applications after they have used
the System Message Line for their own messages (by using the AiF sequence described in the
previous section).

ESC[=11h Forces the display of the current (application) System Message Lin

ESC[=11] Forces the display of thlstAccesStatus Line, if this was enabled whel
HostAccessvas loaded.

Developer’s Guide 161

CHAPTER 3 AIF UTILITIES

System Message Line Control Examples

An application will often use the System message line to display its own status information. On exit,
it can now restore the uséi@stAccesStatus Line display (on the same line as the System
Message Line).

display System Message Line
send to PC 'ESCI[= Ow ..job UPDATE.BALANCES
started at 12:22:15 ..

on exit from the program, restore the HostAccess Status line
send to PC 'ESC[=11I'

Note: If HostAccess Status Line Display has been disabled thkmgiAccess configuration
menus, it will not be psible to redisplay it with AiF sequence above.

Screen Modes, Including 132 Column Support

Host applications may switch the screen in to and out of these screen modes as required by using
the AiF sequences below.

ESC[=3;nh turns specified screen mode on.
Where:

n Is the screen mode value as defined below:

Mode Rows x Cols Monitor/Card

0 132 x 24 VGA cards only
1 80 x 24 (All cards)

2 80 x 42 (EGA cards only)
3 80 x 49 (VGA cards only)
5 132 x 25 (VGA cards only)
6 80 x 25 (VGA cards only)
7 80 x 43 (EGA cards only)
8 80 x50 (VGA cards only)
9 40x 24 (All cards)

10 40 x 25 (All cards)

162 Developer’s Guide

AIF UTILITIES CHAPTER 3

Screen Modes Examples

A user wants to view a report before printing it. The host application cascrtethéo 132
columns as follows:

set host terminal width to 25 rows by 132 columns
send to PC 'ESC[=3;5h’
display and page through report
send to PC 'ESC[=3I'
set host terminal width back to 25 rows by 80 columns

Note 1 If mode parameter is nullwitll have the same effect as setting mode to 1.
ESC[=3I returns screen mode to the settings as configured by the user.

Host applications should first ensure that the user's PC can support the required mode. Invalid
modes will be ignored blpstAccess

Note 2 HostAccessupports a variety of screen modes with the appropriate card and monitor.
However, users should be aware that not all card and monitor configurations can support all of the
modes shown above.

Note 3 The PC must be capable of suppgrthe desired screen modes. The VGA type will need
to have been configured to the correct VGA BIOS type (WtstAccess configuration menus)
before trying to switch into 132 column screen mode.

Note 4 When you change screen modes, you reset a rafrebssion parameters including

closing any open AiF windows, AiF menus and clearing screen backpages, slots, etc. If your
application needs to preserve the current environment before changing screen modes, use the Save
Environment AiF sequence describegagel47,

Changing Cursor Shape

Host applications may change the cursor shape from a line in to a block and vice versa by using the
AiF sequences below.

ESC[=4h Selects BLOCK cursor.
ESC[=4I Selects UNDERLINE cursor.

Changing Cursor Shape Examples

This simple sequence can be useful when writing routines that toggle between different input modes
depending upon what the user is currently doing. For example, many DOS products will use a block
cursor if the user is in Overwrite mode, or an underline cursor, if the user is in Insert mode. This
sequence can be used to emulate this requirement within host applications.

Developer’s Guide 163

CHAPTER 3 AIF UTILITIES

Note: Some oHostAccess terminal emulations (such as Wyse 60) alreadyt shigfacility.
However, the above AiF sequence makes this feature availabléoséafess emulations.

Switching Cursor On/Off
Host applications may switch the cursor on or off as required by using the Aifesdupiew.
ESC[=10h Switches cursor ON.

ESC [=101 Switches cursor OFF.

Cursor Application Examples

This simple sequence is useful when writing routines that need to hide the cursor for some reason
or another. For example, when displaying eregsages within a window it is nice to suppress the
cursor and print a 'press any key' message in the window's footing.

Note Some oHostAccess terminal emulations (such as Wyse 60) already support this facility.
However, the above AiF sequence makes$cature available in alHdstAccess emulations.

Changing the Screen Fill Character

The space character is normally used for clear screen, clear line and new window operations. This
space character can now be replaitecany character in the standard IBM PC character set.

Host applications may change the fill character as required by using the AiF sequences below.

ESC[=12;nnnh Sets the fill character.

Where
nnn Is the decimal value for the required IBMcR&racter.
ESC[=12]| Resets the fill character to a space.

Screen Fill Character Examples

Visually attractive backgrounds to screens and windows can be created with this AiF sequence. For
example, to fill a screen with musical notes as the backgsautia following sequences:

Open window (use AiF window sequences and assign window colours)

send to PC'ESC[=12;014h’
send to PC clear screen code

164 Developer’s Guide

AIF UTILITIES CHAPTER 3

Notes: The fill character ONLY applies to the currently open window (or the current screen if no
windows are open).

In general, this facility should only be used for backgrounds. Very effective screens can be created
by using an appropriate fill character over the whole screen and opening a Selection Box (or Input
Box/Window) in the centre of the screen.

After filling a window, close it to turn the fill character off.

Developer’s Guide 165

CHAPTER 3 AIF UTILITIES

Using Alternate PC Fonts

Terminal emulations generally restrict the range of characters that can be displayed to a selected
subset of the PC Fonts table. Theemany occasions when applications need to be able to
display other characters, such as currency, foreign language, scientific symbols and so on.

To display any character from the standard PC Fonts table, use the AiF sequences below.

ESC[=9;nh Swiches to the specified font tahle
Where:
Table Start End Offset
n = 032 127 O

= 160 255 -128
= 000 031 32
= 128 159 -64
The character values above are for decimal ranges.

To display any character from within a specified ranggpiieation should switch on the
appropriate font table and display the character for the required character value plus/minus the
offset.

ESC[=9I Resets the table back to the terminal font.

PC Font Examples

When presenting choices of selections frpap@own menu or selection box, it is helpful to be

able to display the PC's up/down arrow key symbols to indicate which keys the user should use.
To do this use the following sequences:

Up_Arrow_display = character value of 2432
Down_Arrow_display = ch aracter value of 2532

send to PC 'ESC[=9;3h'

send to PC Up_Arrow_display at required cursor position
send to PC Down_Arrow_display (next to up arrow)
send to PC 'ESC[=9I

send to PC " keys to select menu item"

166 Developer’s Guide

AIF UTILITIES CHAPTER 3

Note: Emulation specific details sucltasor positions are handled separately from characters to
be displayed on the screen. In general, it is better to switch in to the required font, display the
required characters at defined screen positions and then switch back to the normal tedminal font.
other words, there is no need to switch in to and out of the font for each special character.

Special Output Mode

There are occasions when output to the screen will attempt to address areas of the screen that are
outside othe currently open window.

Host applications may now suppress output to these areas of the screen by using the AiF sequences
below.

ESC[=5h Suppresses any screen output addressing areas outside the currently o
window. Output will be continued whée tursor is repositioned to a valid
co-ordinate (i.e. within the current window).

ESC[=5I Disables this special output mode.

Special Output Mode Examples

This AiF feature can be useful wi@blising host applications over which one has limited

control. For example, it might be possible to add modules into such an application and make these
modules more presentable by using soHesiAccess AiF features such as windows, boxes and

so on. Howevert is quite possible that core routines within the original application will still insist

on addressing areas of the screen outside the new module's windows, e.g. to display system/error
messages. In these instances it is useful to be able to supp@sethisitput which would

otherwise tend to corrupt the display within the new module's AiF windows.

Developer’s Guide 167

CHAPTER 3 AIF UTILITIES

Centering Text

Any text string can be centred on a given line within the currently open window (dir isareen,
windows are open) without the need for the host application to work out the starting cursor column
address.

Host applications can center text by using the AiF sequence below.

ESC _Y1Ctext ESC\ Centres text within the current window (or screen).
Where:
Y1 Is the row (line) number within the currently open window (or screen) on whi
text should be centred.
C Is the literal capital 'C': AiF code for centre.
text Is the text string to be centred.

Centering text example

Help text for armpplication might consist of, say, 7 lines held within an array. To display the help
text centred within a window, use the following AiF sequences:

Assign help text array (read from file, etc.):
help_text(1) = 'help line 1'
help_text(2) = 'help line 2'
help_text(7) = 'help line 7'

Open the help text window using colours yellow on red:
send to PC 'ESC[=10;10;17;70; 193;0;1;33;41w'

Loop through the text displaying it:

row=1
loop
until row greater than 7
send to PC 'ESC_' row 'C' help_text(counter) 'ESC \'
row =row 1
repeat

Wait for user acknowledgement and then close the window (with a window clear option)

Notes: Obviously, text strings wider than the current window (or screen) cannot be centred, but
are truncated to fit within the window.

168 Developer’s Guide

AIF UTILITIES CHAPTER 3

Using Macros

HostAccess macro language enables you to open windows and display messages even before your
users are connected to their host applications. Because macros themselves support AiF sequences, it
is easy to build masravith AiF features such as colour, boxes, and windows.

Any macro may be invoked from a host routine by using the following AiF sequence:

ESC_ s macrotext ESC\
Where:

S AIF delimiter, as a lowercase 's'.

macrotext Is the text of the required macro, vétbarriage return char (13) separating ¢
line.

See Chapter-8Jsing the Macro Language for details on writing macros.

Developer’s Guide 169

CHAPTER 3 AIF UTILITIES

Keyboard Control Features

You can control loading and modifying the Function Keys availablestenaayd IBM or
compatible PC Keyboard.

Most applications will normally relieve the user of having to manually program application specific
Function Keys.

HostAccesgives host applications up to 48 programmable Function Keys. Each Function Key may
be indvidually loaded with any ASCII character sequence, including control characters.

Note: HostAccessupports international keyboard mapping for the USA
and all European countries.

Programmable Function Keys

Any one or albf the forty Function Keys availabléliostAccessnay be programmed by a host
application to send character sequences to the host as if they were entered from the keyboard.
These character sequences may consist of any ASCII character includingdesntrol co

Programmable Function Key Table

Keyboard Keys AiF Programmable Key Number Keyboard Type
Normal | Shifted | Ctrl Alt
Function Keys
F1to F10 1-10 11-20 | 21-30| 31— All
40
F11 41 43 45 47 AT
F12 42 44 46 48 AT
Arrow Keys
Up arrow 49 53 57 61 All
Down arrow 50 54 58 62 All
Left arrow 51 55 59 63 All
Right arrow 52 56 60 64 All
Edit Keys
Insert 65 71 77 83 All
Delete 66 72 78 84 All
Home 67 73 79 85 all
End 68 74 80 86 all
Page Up 69 75 81 87 all
Page Down 70 76 82 88 all

170 Developer’s Guide

AIF UTILITIES CHAPTER 3

Programmable Function Key AiF Sequence
Use the following AiF sequence to program a function key.
ESC_n K Key data ESC \
Where:
n Is the programmable Function Key Number. If this is set to 0 then all
programmable keys will be reset.

Keydata Is the character(s) required to be sent to the host when the user presses tt
Function. If this string is empty the kewill be reset.

Key. Key data should be entered as normal text (without quotes). Control characters are entered as
“A,"B, etc. Us ™ for the character "'

For characters in the range 128 to 255 enter the three digit decimal value after a "' e.g. ~128. (Any
character may be entered in this manner, but please note that 7 bit links will not send 8 bit
charactersthe top bit will ke stripped off).

Examples

To program Function Key 1 to send the word SYSPROG, then a Carriage Return, then the word
MENU followed by another Carriage Return, use this sequence:

ESC_1KSYSPROG"MMENU*MESC \
or:

ESC_1KSYSPROG"013MENU”013ESC \

Programming Control Codes

Notes You can program any character into the function keys by usiray@iapfollowed by a
3 digit number. BACKSPACE for example woultidf8, character 254 would 2254,

Some useful control codes are listed below:

Programmable Sequence Description KeyboardInput
A control | Tab

AN control J line feed

M control M Carriage return
N control [ESCape

Note that some XT compatible machines may not generate a code for the function keys F11 and
F12, even though thelseys may be on the keyboard.

You should be aware of the order of precedence assigned to Function Keys, depending upon how
they have been loaded.

Developer’s Guide 171

CHAPTER 3 AIF UTILITIES

Toggling Caps Lock On/Off
Host applications may switch the caps loakr @ff as required by using the following AiF
sequences.
Toggle Caps Lock AiF Sequence
ESC[=28h Toggles Caps Lock on

ESC[=28] Toggles Caps Lock off

Switching Scancode Keys On/Off

The PC keyboard hasamber of keys that are generally accessible to the user when using DOS
products but are not generally accessible when using host applications. This is simply because there
may not be any matching keys in the terminal being emulated. Virtually &kgpesieh as

arrow keys, Page Up/Down, Ins, Del, Ctrl, Alt, etc., are now accessible to host applications by using
the PC Scancode keys facility with the following AiF sequences.

This AiF sequence is available to host applications regardless of wizdtetewnation the user
has chosen.

Scancode AiF Sequence
ESC[=6;ph Switches Scancode Keys on.

ESC[=61 Switches Scancode Keys off and keyboard inputs revert to the charac
would normally be returned by the user's current emulation.

p is the scancode prefix as the ASCII decimal value of the character to precede the keyboard
response. The default valu@ dd zero, but we recommend thas set t® (ASCII character STX,
start of text) so that this is consistent with all of the AtResequences that send responses.

The prefix is needed so that applications can easily determine that they should be looking for
Scancode keys when processing user input. When switched on, the user keyboard responses are sent
back to the host in the foling format:

scancode_prefix key_scancode
Where:

Scancode_prefix IS the ASCII decimal value of character used as prefix.

Key_scancode Is the ASCII character corresponding to the key depressed by the user.
of Scancodes supported is shown below.

Note: some UNIX systems are unable to accept ASCII character value 0 as valid input.

172 Developer’s Guide

AIF UTILITIES CHAPTER 3

Scancode Keys

Ranges of keys are specified as from the leftmost key to the rightmost key on one row of the
keyboard. For example, Alt/Q to A/@ tAlt/P is the range of keys generated when the Alt key is
pressed at the same time as one of the following Q,W,E,R,T,Y,U,I,O,P keys.

HostAccessupports the following Scancode keys. Any other key(s) entered by the user whilst
Scancode keys are on arernettlin their normal character representation.

Developer’s Guide 173

CHAPTER 3

Keytop Legend (keystrokes)

AIF UTILITIES

Scancode in Hex ASCII Character decimal value

Alt Esc

Alt Backspace
Shift + Tab

Alt/Q to Alt/P

Alt [

Alt]

Alt Enter

Ctrl

Alt/A to Alt/L
Alt/Z to Alt/M

Alt

Function keys-10
Home

Cursor Up

Page Up

Alt Num - (minus)
Cursor Left
Cursor Right

Alt Num + (plus)
End

Cursor Down
Page Down

Ins

Del

Shift Function keys 110
Ctrl Function keys-10
Alt Function keys-10
Ctrl/Print Screen
Ctrl/Cursor Left
Ctrl/Cursor Right
Ctrl/End
Ctrl/Page Down
Ctrl/Home

Alt/1 to Alt/+
Ctrl/Page Up
F11

F12

Shift F11

174

01

1E

OF
10to19
1A

1B

1C

1D

1E to 26
2Cto 32
38
3Bto 44
47

48

49

4A

4B

4D

4F

4F

50

51

52

53

54 to 5D
5E to 67
681to 71
72

73

74

75

76

77

78t0 83
84

85

86

87

1

14

15

16 to 25
26

27

28

29
30to 38
44 t0 50
56

59 to 68
71

72

73

74

75

77

78

79

80

81

82

83

84 to 93
94 to 103
104 to 113
114

115

116

117

118

119

120 to 131
132

133

134

135

Developer’s Guide

AIF UTILITIES CHAPTER 3

Keytop Legend (keystrokes) Scancode in Hex ASCII Character decimal value
Shift F12 88 136
Ctrl F11 89 137
Ctrl F12 8A 138
Alt F11 8B 139
Alt F12 8C 140
Ctrl Up Arrow 8D 141
Ctrl Num- (minus) 8E 142
Ctrl Num 5 8F 143
Ctrl Num + (plus) 20 144
Ctrl Down Arrow 91 145
Ctrl Ins 92 146
Ctrl Del 93 147
Ctrl Tab 94 148
Ctrl Num / 95 149
Ctrl Num * 96 150
Alt Home 97 151
Alt Up Arrow 98 152
Alt Page Up 99 153
Alt Left Arrow 9B 155
Alt Right Arrow 9D 157
Alt End 9F 159
Alt Down Arrow A0 160
Alt Page Down Al 161
Alt Ins A2 162
Alt Del A3 163
Alt Num / A4 164
Alt Tab A5 165
Alt Num Enter A6 166

Scancode Keys Examples

To determine if the user has depressed the Function Key F1, regardless of the current emulation
being used and regardless of the possible contents of this fundfidndteynay have been
loaded by this or another application), use the following logical construct:

switch scancode keys on
send to PC 'ESC[=6;2h'
get_user_input
input user_response
if first character of user_response equals ASCII 002 (decimal)
then
sc ancode_key = 2nd character of user_response
end if
find out which key has been pressed

Developer’s Guide 175

CHAPTER 3 AIF UTILITIES

if scancode_key equals ASCII 059 (decimal) then
F1_pressed = true
end if
process keyboard responses
if F1_pressed is true then
send to PC "you pressed the F1 key..."
and soon

Do not forget to switch Scancode keys off just before exiting this routine, with the following
sequence:

send to PC 'ESC[=6I'

Scancode Keys Notes

It is important to remember to switch Scancode keys OFF when your applicatibtheyitse
not switched off, other applications may not be able to interpret user input correctly.

You should not switch Scancode keys on and off around individual input statements as this cannot
be done fast enough for typeahead. In general, switcbd&ckeays on when entering a routine
and switch off when exiting.

The Scancode prefix has been made a parameter so that you can change this to suit the host system
or network on which their applications are being used.

You can use this with the Page Kag#ify ofHostAccesso give more flexible keyboard re
mapping and input.

If Scancode keys mode is on, the scan codes are sent to the host in preference to any other value
associated with that key. Where Function keys are concerned, Scancodes tage pvecdubst
or user programmed function keys, etc.

176 Developer’s Guide

AIF UTILITIES CHAPTER 3

Typeahead Mode

Users tend to like to be able to typeahead when running host applications, particularly impatient
users or users that are familiar with the keystrokes reqge¢dot@ defined point within an

application. However, when host applications start to use the AiF menus, selection boxes and field
input modes, the user's typeahead keystrokes may be sent to the host (rathirstitarteg)s

between successive AiF sames.

To prevent this happening, host applications can switch on a special input mode that enables the
user's typeahead keystrokes to be saved for and tgEiAncess menus and input modes.

Host applications can switch this mode on by using thed\iErsce that follows.
ESC[=20h Switches Typeahead Mode on.

ESC[=201 Switches Typeahead Mode off. Any characters withtAccess
typeahead buffer will immediately be sent to the host.

Typeahead Mode Examples

The user may know that he/she is about to enter an application that make®siFeoésaiF
menus and that two right arrows, then a down arrow, a carriage return and, finally, a Function Key
F5 will select the required menu option and accept thetsaftan AiF input box.

By switching Typeahead Mode on, the host application willldostlecess AiF to locally
process all of the user's keystrokes, rather than send them to the host.
Notes

It is important to remember to switch Typeahead Mode OF#s ifot switched off, other
applications may not be able to interpret user input correctly.

There is a limit of 20 bytesHiostAccess Typeahead buffer. In practice this is adequate as
processing will almost invariably catch up with the user befaisetthas been able to type in 20
characters.

If the user presses the break kmgtAccesautomatically switches Typeahead Mode off and
flushes the PC's typeahead buffer.

Command Stack Control

HostAccesautomatically reads user keyboard input into a Command Stack within the PC's
memory. The user is able to recall this Command Stack, modify entries within it (by using the
ALT/ R hot-key) and reise previously entered (or modified) commands.

Host applications, in general] mot want to fill up the user's command stack with input required
by their applications (such as data entry screens, etc.).

This AiF feature allows a host application to stop keyboard inputs being appended into the
Command Stack and teerable this féare (normally on exit from the application).

Host applications can switch this mode on and off by using the AiF sequences below.

Developer’s Guide 177

CHAPTER 3 AIF UTILITIES

ESC[=21h Enables the Command Stack.
ESC[=211| StopsHostAccesgputting keystrokes into the Command Stack.
ESC[=21e Flushes the command stack

Command Stack Examples

The Command Stack has a limited number of entries, so in general, any application that requires
keyboard input should disable the Command Stack in order to preserve the user's commands
entered before inking the application.

Note: Applications that process user input on a single character basis will tend to add entries into
the command stack until the user enters a carriage return. Such applications should consider
switching the command stack mode offeyfiiocessing user input, then switch it back on when

the user exits the application or temporarily leaves it through an application's gateway.

178 Developer’s Guide

AIF UTILITIES CHAPTER 3

Mouse Control

You can program certain host applications so that users can use alpwingnguch as a mouse,
to interact with host based software.

You can give host applications the ability to monitor mouse movements and button depressions by
the user with the following AiF sequences.

You can also program Hotspots. A Hotspot is a chasfiétgy on an emulation screen which has

been programmed so that when you move the mouse cursor over the character string and click the
right button, a particular function is activat
t hr ou g h the progtamried Value stored in that function key is returned to the host. If that
character string is not detected, then the first alphanumeric pattern from the left hand edge is
returned with a postfix of Carriage return, so that in the sequence Ai2BBihg returned is

‘A2,

Mouse Control AiF Sequences

To detect if a mouse is installed on the user's PC use this AiF sequence:
ESC[=8n

The following response will be sent to the host application:
<STX> <CR> code <CR>

Where:
<STX> Is the specid@tart of Text character (ASCII decimal value 002).
Code Is the mouse install status where:
0 mouse NOT installed.
1 mouse installed.
<CR> Is carriage return (ASCII decimal value 013).

To activate the mouse or Hotspots and determine which eventsghmalditored, use the
following AiF sequence:

ESC[=27;nh Switches mouse monitoring or Hotspots ON.

Where:
n Is an integer code that determines which mouse events will be returned to the
where:
1 Monitor Left Button pressed down.
2 Monitor Right Button pressed down.
4 Monitor Centre Button pressed down.

Developer’s Guide 179

CHAPTER 3 AIF UTILITIES

8 Continuously send mouse addresses whilst a button is depressed.
16 Switches on Hotspots.

65 Monitor Left button double click

66 Monitor Right button double click

68 Monitor Centre button double click

128 Monitor Scroll Wheel

Note: Where 16 is used, only 1,2 and 4 will work. If 16 is applied on its own, the mouse will not
work as no button has been supplied.

Either mouse monitoring or hotspots may be enabled but notftibthvalue of 16 is seen then
Hotspots will be chosen in preference.

These codes are additive, e.g. to monitor the mouse continuously while the Left button is depressed
set this code to 9.

Format of Events Returned
Mouse ewvets are returned to the host application in the following format:
<STX> MS <CR> button_status, Y1, X1 <CR>

Where:
<STX> Is the special Start of Text character (ASCII decimal value 002).
MS Is the literal letters 'MS' (AiF code for mouse).
<CR> Is carriage return (ASCII decimal value 013).
Button_status The state of the mouse for this monitored event code in the form an i

Where:

0 Only returned if "continuously" monitoring the mouse and then
the button(s) is/are released.

1 Left buttan depressed.

2 Right button depressed.

3 Both Left and Right buttons depressed.

4 Centre button depressed.

5 Left and Centre buttons depressed.

6 Right and Centre buttons depressed.

7 Left, Centre and Right buttons depressed.
65 Left button doublelicked

66 Right button double clicked

68 Centre button double clicked

128 The Mouse Wheel has been rolled. In this case, Y1 is the num
detents by which the wheel turned (a positive number indicates

180 Developer’s Guide

AIF UTILITIES CHAPTER 3

the data on screen should appear to mowawards) and X1 is the
number of lines (as configured in Windows) that is suggested tc
per wheel detent.

Y1l The Y ceordinate as an integer row value.

X1 The X coeordinate as an integer column value.
Mouse monitoring and Hotspots should be tuafidith the following sequence:

ESC[=27] Switches mouse monitoring or Hotspots OFF.

Mouse Interaction Examples

A host based calculator program could be dramatically enhanced by making use of AiF sequences,
including mouse interaction. The basic tstre®f such a program is outlined below:

Send to PC AiF sequences to "draw" the calculator (boxes, symbols,
etc).

Build map of valid mouse co - ordinates.
Activate mouse and monitor any button with:
send to PC ESC '[=27;7h'
Loop to process user input
input calc_key
if calc_key starts with STX then
input mouse_coordinates
map mouse co - ordinates into valid calc_key
end if
assign calc_operand from calc_key
process calc_operand until quit
Please note that in the above example that no check has been maifde nwosise is installed and
the routine attempts to handle both mouse and keyboard input at the same time by looking for the
special Start of Text character. If this is found, mouse input is assumed to have occurred. If not
found, keyboard input is assamiot all applications will need (or wish) to monitor inputs from
both devices at the same time.

Notes: You should be aware that if you monitor mouse events continuously you may "flood" the
host system with data from the mouse, with a detrimental ongaaformance and user patience.

It is recommended that applications, particularly those running over asynchronous links or X25
networks, selectively monitor mouse events, e.g. only when the user depresses the left button.

Mouse interaction walutomatically work with existing AiF Selection Boxes aridd®apMenus.

If a user chooses to use the mouse whilst within an AiF menu, the nandseates on the

selected menu option are converted into the appropriate remtinades. There is no nded

include the above mouse processing AiF sequences within existing AiF menu processing routines.

Developer’s Guide 181

CHAPTER 3 AIF UTILITIES

Programmable DOS Gateway

The AiF DOS gateway gives host applications the ability to invoke DOS and to run DOS
applications. Upon Exitingoin DOS, the user is returned to the host environment exactly where it
was left, with the current screen, backpages, including the AiF menus, etc. intact.

This DOS interface is so crisp that it is possible to seamlessly combine the DOS and host operating
environments.

Programmable DOS Gateway AiF Sequence
To invoke the AiF DOS gateway from a host application use the following sequence:

ESC _sc;0DCmd1l; ...; Cmdn % keys ; Cmdnn ESC\
Where:

sC Is the screen control codeHostAccessas follows:

0 Opens, activates and normalises a DOS shell window and executes the C
routines within that window.

Opens, activates and minimises a DOS shell window.
2 Leave currently active host session screen.

When the DOS commands have been completed, the DOS shell window will be closed and the
HostAccessvindow will be automatically reactivated.

0 Is the literal O.

D Is the literal capital letter D.

Cmd1 .. If no commands are specified the user is takihe DOS command line.
Cmdnn Entering EXIT will return the user to the host session. If specified, the

may be any valid DOS commands. Any number of DOS commands n
strung together using the s@mwlion as each command delimiter.

Cmdn % keys If DOS keyboard inputs are required to drive DOS applications then &
special symbol '%' may be appended to a DOS ‘command'. This turn:
DOS Keyboard Stacker and feeds the DOS applications with the key:
it requires. See DOS Keyboard StackeagalB4for details.

DOS commands sent by the application from the host should be in the same format as you would
enter them at the DOS command line.

They can consist of DOS operating system commands (such as DIR or CD), program calls (such as
WS for WordStar) or batch file calls.

182 Developer’s Guide

AIF UTILITIES CHAPTER 3

DOS Gateway Examples

To change directory to your weaabcessing directory WP and then run youryyadessor, use
the fdlowing sequence:
ESC _ 0;9D CD\WP;WP ESC\

As soon as the last DOS command is finished, the host application screen will be returned to. This
may mean that the user will not have an opportunity to read the output of commands such as DIR.
However, DOS has command called PAUSE which waits until the user hits a key. You can add
this command to your command string to allow the user to read the screen before it is overwritten,
for example:

ESC _ 2;0D DIR;PAUSE ESC\

This lists the contents of the current Ddd®ctory and then waits for the user to hit a key after the
'strike a key when ready . . .' prompt.

Developer’s Guide 183

CHAPTER 3 AIF UTILITIES

DOS Keyboard Stacker

DOS Keyboard Stacker is a facility within the DOS interfat@sthccessvhich automatically
places kesgrokes into your PC's keyboard buffer and sends them to a DOS application as if they
were being typed in by the user.

Almost any keyboard input may be simulated and delays can be included to overcome problems
caused by DOS applications flushing the keylbodfer before accepting input. This facility can

be used with the AiF sequences described in the two preceding sections for programmable DOS
gateways and running DOS programs.

Keyboard Stacker Description

Ordinary alphanumeric data, including numbenstyation, braces, etc., are stacked by placing
them within single or double quotes on the command line as below:

% "document name"

Keys that do not correspond to a displayable character, for example control keys, are represented by
special two charactavdes.

Special Keys: Mnemonics
A number of mnemonics are defined to represent certain special keys. These are:

Mnemonic Special Key
LA Left Arrow
RA Right Arrow
UA Up Arrow
DA Down Arrow
PU Page Up
PD Page Down
HM Home

EN End

IN Insert

DE Delete
TAorTB Tab

ST or BT Shift Tab (=Back Tab)
ES Escape

BS Backspace

184 Developer’s Guide

AIF UTILITIES CHAPTER 3

Mnemonic Special Key

SP Space bar

CR Enter

LF Ctrl-Enter

DQ The double quote "
SQ The single quote *

These codes can be entered in upper or taser You may use spaces between mnemonics to
increase readability. These spaces will be ignored (unless they are between quotes).

Special Keys: Leader Characters

A number of keys (such as Shift, or function key$fecapresented by a spdeiatier character

foll owed by a single character qualifier. For
by F1, F2, F3 ..F9. Function keys F10, F11 and
respectively.

There will ke times when a DOS application program or command will flush the keyboard buffer
before asking for a keystroke. This is to force you to respond or to make sure the response is not
accidental. If you just stack the keys you want, they will also be fiishecerample of this is

the DOS LABEL command.

You can place a delay into the stack, so the DOS Keyboard Stacker will pause for a specified period
before continuing to insert keys into the buffer, using the convkimamdror example, to wait
about 2 secals before putting an ESCape key into the buffer, use:

% W36 ES
Alternatively, to program a wait of about one minute, followed by an ESCape key, use

% W255 W255 W255 W255 ES

It is also possible to insert "pauses" within the keyboard stacker sequencesWBiNY Efzad
WB mnemonics, and these wait for user input before activating any subsequent stacked keys.

All these mnemonics are summarised below:

Developer’s Guide 185

CHAPTER 3

AIF UTILITIES

Character Represents Character Represents

n Control function. Wnn Wait time in 55 millisecond units (clc
ticks, about 18.2 per second), where
is from 1 to 255.

@ Alt function. WP Wait for user key and then pass it or

Shift function. WE Wait for user key and thémwow it

away.

F Function key wWB Wait until key buffer is empty.

S Shift function key BR Break.

C Control Function key.

A Alt Function key

For example\C represents Control @2represents Alt/2, anll9 represents Alt/F9.

Special Keys Example

Here is a simple example of a DOS command using DOS Keyboard Stacker. To execute the DOS
TIME command, wait 1 second and then input a time of 12:10 followed by a carriage return, use:

ESC _ D TIME % W018 "12:10" CR ESC\

186

Developer’s Guide

AIF UTILITIES CHAPTER 3

Printing to a DOS File or Device

All forms of terminal printing including screen dump, hardcopy and direct (slave) printing are
supported.

Printer output can be generated via an AiF sequence from the Host or froiaosithatessand

can be directkto a DOS disk file or to a printer on the PC. The print destination can either be set
through the Bnt Setup... option on tt&ssion menu or from the host application using an AiF
sequence. This destination name will only affect the currently asibre se

All terminal emulation protocol specific printing commands are supported, for example McDonnell
Douglas' PORTOUT. However, it is recommended that you use the ANSI sequences given below
as they are supported in all the terminal emulations avaiidide applications will only need to
support one set of terminal printing sequences).

Printing AiF Sequences

ESC[=0i Print screen to current print device.

ESC[=4i Switch OFF direct (slave) printing.

ESC[=5i Switch ONdirect (slave) printing to current print device.

ESC[=8i Closes the printer, even when the keep printer open feature is enable:

To change the current DOS device for printing for the currently active session, use the following
seguence:
ESC _ L device.name ESC\
Where:
Device.name Is the DOS device or filename into which all print output should be di
for this session. It could be LPT1, LPT2, COM1 or COM2 if you have

printer on one of those devices or it could be a DOS file name. To re
the default printer use PrintManager.

Printing Examples
To send print data to a printer on parallel port 1 use the following 'code":

SET DEVICE send to PC 'ESC_LLPT1ESC \!
PRINT ON send to PC 'ESC[=51"

send to PC print_data_lines
PRINT OFF send to PC 'ESC[=4"

To switch printing to the DOS file\®RINT.LST and to append a dump of the screen contents to
it, use the following 'code":

SET DEVICE send to PC 'ESC_LC: \ PRINT.LSTESC \"'
DWIP SCREEN send to PC'ESC [=0i'

Developer’s Guide 187

CHAPTER 3 AIF UTILITIES

Notes: Although both ANSI and termal protocol specific printing commands will be accepted,
direct print On and Off commands should be matched. For example, you cannot use the PRISM
specific command to switch on printing and the ANSI command to switch it off.

If you are using the Host Printing facilityHostAccess File Services, do not attempt to direct
HostAcces®OS printing to this device.

When printing to a DOS file, this filal&ayappended to. If this is not required, delete the file
before printig commences. This may be done by using the Erase DOS File AiF sequence (for
more information see the following section).

AiF has an additional 'printing' feature that enables screens to be sent back to the host system (for
details see Capturing Screert dapage01

Printing to a USB Printer

If you wish to direct print outpth aUSB printer you will need ittstruct Windows tmap the
USB printeto a giverLPT port.

You will first need to share the USB priated therrunthe following command:

net use LPT1: \ServerName\PrinterName /persistent:yes
Where:

ServerName Is the name of the server sharing the printer

PrinterName Is the share name of the printer

Erase DOS File

Host applications that piplata to DOS files will often need to delete the target DOS file at some
stage within their processing. Applications will want this to happen transparently to the user (i.e.
without the need of invoking the DOS gateway and executing the DOS Del command).

This is easily achieved by using the AiF sequence that follows.

ESC _E filename ESC\\
Where:

filename Is the name of the DOS file to be deleted, including its filename extension
full DOS drive:path to the file.

Examples

To delete the DOS filealled TEMP.DOC in the DOS drivpath Ct HOST, use the following
sequence:

send to PC 'ESC_E C: \ HOST TEMP.DOC ESC\'

Note: Use with care!

188 Developer’s Guide

AIF UTILITIES CHAPTER 3

No indication or request for confirmation of the file deletion is given to either the user or the host
applicationilt is the application's responsibility to verify that the correct file has been deleted, if this
is required. If the DOS file to be deleted does not exist, control is simply returned uninterrupted to
the host application.

See Verify DOS File or Directdfyists on pag&92if you need an AiF sequence to verify the
existence of a DOS file.

Developer’s Guide 189

CHAPTER 3 AIF UTILITIES

Request HostAccess DOS Run Directory

Host applications can request thastAccestells them from which DOS directdfipstAccesss
running.

It is often useful for host applications to be aware of the currdimheuDOS path so that this can
be used to store temporary DOS files, for example, when automating file transfer.

This can be achieved by using the following AiF sequence:

ESC[=9{; code} n
Where:

Code 0* = Working directory, long file name format
1 = Installation directory, long file name format
2 = Temp directory, long file name format
8 = Working directory, short file name format
9 = Installation directory, short file nafoemat
10 = Temp directory, short file name format.

Note: Long file name support is available to both the 16 doiicv@2sions oHostAccesshut
only on Windows 95/98 and NT.

HostAccessesponds with the following message:
<STX> <CR> path <CR>

Where:
<STX> Is a special start of text character (ASCII decimal value 002).
path Is the full DOS drive and path to tHestAccessuntime directory, e.g.
CAHOSTACQ HOST.EXE
<CR> Is a carriage return (ASCII decimal value 013).
Examples

To request the crentHostAccessuntime directory, use the following sequence:

send to PC 'ESC[=9n'

loop input response until response equals STX do repeat

input pc_path

DOS_run_drive = first two characters of pc_path

DOS_run_directory = all characters after the last " "
delimiter

in the pc_path string

Note: Remember that the current DOS session drive and path may be changed in a number of ways, by other
AiF sequences, or by the PC user. This sequence is useful for host applications that need a consistently valid

190 Developer’s Guide

AIF UTILITIES CHAPTER 3

DOS pathfor operations such as file transfer to DOS.Refer to the following section if you need an AiF
sequence to verify the existence of a DOS file.

Request HostAccess System Information

This AiF sequence may be used to find out more information about the'wysiem
HostAccess.

Use the following sequence to get the HostAccess System Information:
ESC _ 84 ; type w {variable} ESC \

Where:
type The type of information HostAccess should return:
. Printer Information
. Date and Time
. Date
. Time

. ComputeName and User Name
. Computer Name
. User Name

00 N O g b~ WDN PP

. Environment Variable
variable The environment variable. Used only when type = 8.

This returns:
<STX> <CR> data <CR>

Where:
<STX> Is the start of text character (ASCII decimal value 002).
<CR> Is carriage return (ASCII decimal value 013).
data Is the data returned e.g. Computer Name, User Name, Date and/or Time ¢

Developer’s Guide 191

CHAPTER 3 AIF UTILITIES

Verify DOS File or Directory Exists

Host applications thatanipulate DOS files (e.g. throltgstAccess file transfer, FORMs or
direct print facilities) often need to check the existence of the target DOS file at some stage within
their processing. Applications will want this to happen transparently to the user.

This is easily achieved by usiiegAiF sequence that follows.
ESC _ G path ESC \
WhereG is the capital letter 'G'".

path Is the name of the DOS file or directory to be verified, including its filename ex
and the full DOS driviepath to the file.

HostAccesanswers this inquinyittva response in the following format:
<STX> <CR> code <CR>

Where:
<STX> Is the start of text character (ASCII decimal value 002).
<CR> Is carriage return (ASCII decimal value 013).
Code Is an integer code that answers the verification request ashen®ltdwing: 0

(DOS path does not exist), 1 (DOS File exists) or 2 (DOS Directory exists).

Verify DOS File Examples

To verify the DOS file called TEMP.DOC in the DOS drpath Ct HOST, use the following
sequence:

send to PC'ESC_G C: \ HOST TEMP.DOC EQ\"

loop until input_string equals STX do repeat

input response

if response equals O print "File does NOT exist I!"

if response equals 1 print "File exists"

if response equals 2 print "TEMP.DOC is a DIRECTORY !I"

Note: HostAccesserifies the existenoéeither a file or a directory dependent upon the DOS
path specified.

192 Developer’s Guide

AIF UTILITIES CHAPTER 3

Data Extraction to DOS and Windows

We have developed for PICK users a sophisticated and powerful tool for automatically sending
PICK data to almost all DOS avdndows packages such as WORD, EXCEL, LOTUS,
WordPerfect, SuperCalc, QUATTRO etc.

These routines now give developers the ability to integrate data seamlessly from PICK databases
into DOS and Windows packages.

Consequently, there are many users today g/ablarto use PICK's query language to retrieve

data and then pass this data directly into a DOS or Windows spreadsheet, automatically adjusting
column widths and headings as the user is taken into the spreaashakkbf this by simply

selecting a meé option on the PICK host!

UNIX users are provided with the file transfer facilities to enable them to extract and retrieve data
to/from DOS files.

The following topics describe the AiF sequences used for communication with other Windows
applications, arfor monitoring their status. For details of AiF sequences to use within Dynamic
Data Exchange, see ChapteD¥namic Data Exchange.

Developer’s Guide 193

CHAPTER 3 AIF UTILITIES

Displaying Images

HostAccessises a separate Windows program péagligmages. Images are displayed within their
own window which can be movedsized, maximised, or minimised by the user, as required.

The Display Images program can be invoked using the Start Windows Program sequence (described
later in this sectior)sing the following command line parameters.

Displaying Images AiF Sequence
Use the following sequence to display an image:

IMAGE /I filename {/T title} {{Z zoom} {/F}
Where

IMAGE Is the name of the image display program (IMAGE.EXE) which will have beer
installed into the directory in whidbstAccessvas installed.

N Is the command line flag indicating that an image filename will be specified. T
musbe followed by a space.

filename Is the full path and filename for the .PCX image file. T&heoeneed to specify the

.PCX suffix.

IT Is the optional command line flag indicating that a title will be specified. Tinisf
be followed by a space.

title Is an optional title that will be displayed in the Application Name bar. If omitte:
"Image [Filename]" will be used.

1z Is the optional command line flag indicating that a zoom factor will be specifie
flagmusbe followed by a space.

zoom Is the zoom factor as a percentage of the image's size. The default is 100 (sa
The zoonTactor can be any number greater than 0, such as 25 (¥4 size), or 20
size).

/F Specifies that the image is to fit into the size of the image display window. If s

this means that if the user changes the image display window size, th# image
automatically be scaled to fit as best as possible.

Displaying Multiple Images

You can display more than one image on the same screen at the same time. To achieve this, simply
send another AiF sequence for the meage, changing the scale as required (and before waiting
on input for the response).

There is no limit to the number of images that can be displayed in this manner, simply repeat the
AiF sequence for each image. It is often useful to decrease thithsgeeinfages by setting the
'scale’ parameter to 50 (half size) or less.

194 Developer’s Guide

AIF UTILITIES CHAPTER 3

Please note that multiple images can only be displayed on the same scralémaiveitsntical
palettes. Images with different palettes will ‘corrupt’ each others' screésftenagjging an
"infra-red"” like display).

Users displaying images will see the images displayed using the resolution and colours as per the
current Windows desktop.

Closing the Image Application

This AiF sequee closes a Windows application and should be used to close Windows that are
displaying images.

This sequence should be used with great care. Close Application is only intended for use with
Windows applications thdd natupport DDE. If an applicatiomgports DDE, we strongly
recommend that you use a DDE link to close the application.

ESC_x AP ESC\
Where xis AiF code, andP is the name of the Windows application that is to be closed.

Note: this name should exactly match the name displayed inlitetiapfs title bar. This name is
not case sensitive but it is sensitive to other factors, such as double spaces, curly brackets, etc.

Closing the Image Application Example
To close the image opened in the previous example, you could use the follosviog: seq

ESC_x United Kingdom ESC \

Note: The host application should close down image windows when appropriate. Please bear in
mind though, that the user also has this capability. Images may be removed from the user's desktop
by using the Close Image Winddpplication sequence (described above). Make sure that you
specify the correct image window by using the exact name of the window, which will be either
"Image [filename]" or "title", if a title was specified when the image was invoked.

Developer’s Guide 195

CHAPTER 3 AIF UTILITIES

Control State of Window

This AiF sequence provides control over the window state (Minimise, Maximise etc.) of a given
application already running on the Windows desktop.

ESC _STc AP ESC\
Where:

ST Changeshe State of the application's window as follows:

1-— Activates and displays the window.

2 — Activates and minimises the window.

3—Activates and maximises the window.

7 - Displays the window minimised but does not change active window.
c Is lowercase €AiF code.

AP Is the name of the Windows application. Normally this is the name held in the w
Title as shown exactly on the desktop, i.e. WordPerfect DOCUMENT1
UNMODIFIED] If AP is null, the state change will affect the current windo

Control Window State Response Format
The response will be
<STX> <CR> status <CR>

Where:
<STX> Is the start of text character (ASCII decimal value 002).
<CR> Is a carriage return (ASCII decimal value 013).
status Is thetask number which is 0 if the application does not exist.

Note: Itis recommended that you use DDE if it is available and practical because using the server
name is more accurate and reliable than depending on the Application Name.

196 Developer’s Guide

AIF UTILITIES CHAPTER 3

Start Windows Program
Use this sequence to allow any Windows program to be started on the desktop:

ESC _STePNESC\
Where:

ST s the state in which you want the Windows program to be started:

1 Activates and displays the window.

2 Activates and minimises the window.

3 Activates and maximises the window.

7 Displays the window minimised but does not change active window.
e Is lowercase €AiF code.

PN Is the name of the Windows program that you wish to start e.g. 123W or
D:\ 123W 123W (If .EXE is omitted, it is assumed). If you do not specify a drive
and/or path, the Windows application will be searched for in the following seque

Look in current directory.
Look in the Windows directory.
Look in the WindowsYSTEM directory.

Look in the directories specified in the PATH variable

A WN P

5 Look in the directories mapped in a network.
You can also specify startup parameters here. For instance:
d\ 123W 123W DEMO.WK3
to start 123 for Windows and open DEMO. Wi & ksheet.

Start Windows Program Response Format
The response will be:
<STX> <CR> status <CR>

Where:
<STX> Is the start of text character (ASCII decimal value 002).
<CR> Is a carriage return (ASCII decinedlie 013).
status Is the task number of the application. If it is < 32 the application was not star

Developer’s Guide 197

CHAPTER 3 AIF UTILITIES

Detect if Windows Application Running
Use this sequence to ascertains whether or not a Windovegiapp¢icunning:

ESC _a AP ESC\
Where:

a Is lowercase -@AiF code.

AP Must be the name of the Windows application. Normally this is the name held in t
Window Title as shown exactly on the desktop, e.g. WORDPERFECT [DOCUMEI
UNMODIFIED].

Detect Windows Application Response Format
The response will be
<STX> <CR> status <CR>

Where:
<STX> Is the start of text character (ASCII decimal value 002).
<CR> Is a carriage return (ASCII decimal value 013).
status Is the task number which is 0 if the apfiio is not running on the desktop.

Note If the application supports being a DDE server, it is recommended that you use the ESC_Id
SN;TP ESE sequence (Initiate DDE) to detect whether that server application is active or not,
because using the servame is more accurate and reliable than depending on Application Name.

198 Developer’s Guide

AIF UTILITIES CHAPTER 3

Send Keys to Windows Applications

This sequence sends keys in the DOS keyboard stacker format to the specified Windows application
AP. Thisallows almost any Windows application to be driven automatically.

There is no conversation taking place betitesticcesand the Windows product to which you

are sending keys, so you have no way of validating that the keys have been accepted by the other
product. We recommend that you at least validate that the other application is running before you
attempt to send keys. To do this, you can use either the AiF sequence Detect if Windows
Application is Running (described earlier), or the sequenceDiiiasee Dynamic Data

Interchange.

ESC _k AP % keys ESC \
Where:

k Is lowercase kAiF code.

AP Must be the name of the Windows application. Normally this is the name held
window Title as shown exactly on the desktop, e.g.

WORDPERFECT [DOCUMENTZ UNMODIFIED]
If AP is null, keys are sent to the current window.
% Is an AiF delimiter.

keys In the same format as the DOS keyboard stacker (see DOS Keyboard Stacket
184for details).

You should use DDE if it svailable and practical, as using the server name is more accurate and
reliable than using the Application Name.

Developer’s Guide 199

CHAPTER 3 AIF UTILITIES

Miscellaneous AiF Facilities

The following topics document several of the miscellaneous but often very important features
within AiF.

For addiional or modified AiF features, please contact your deRlegwe Wavdirectly. We

have a policy of incorporating user feedback directly into future releases where these requests fall
within the general development strategy. (For details of therlhtegtements available in
HostAccessrefer to the READ.ME file on théostAccesslisk).

Closing HostAccess From Host

An AiF sequence is available to ditsetAccessThis feature allows application developers to
include ‘closklostAccessn their application menus.

HostAcceswill NOT ask the user to confirm the close request as would be done if ALT/X was
entered from the keyboard.

The user will be returned straighDOS and without any warning if tHestAccesparameters
have been changed.

Closing HostAccess From the Host AiF Sequence
Use the following AiF sequence:

ESC _XESC\
Notes: After closinddostAccesshe application should normally close the host ssdbat was
drivingHostAccess

This AiF sequence is often used in conjunction with automated File Transfer to or from the host
but initiated from the PC through the uselo§tAccess Macro Language. It enables the PC to
process file transfer(s) rematedgoff the host session and thenldritAccesso return to the
controlling DOS process (batch file).

For more information on the macro language, please see Chajsiegihe Macro Language.

200 Developer’s Guide

AIF UTILITIES CHAPTER 3

Getting HostAccess Run-time Status

This AiF sequence may be used to find out more informationHadstAtcesand its rurtime
environment.

Use the following sequence to getihstAccesRuntime status:

ESC[=10n
This returns:
<STX> <CR> a;b;c;d <CR>

Where:
<STX> Is the start ofext character (ASCII decimal value 002).
<CR> Is a carriage return (ASCII decimal value 013).
a 1 if Windows version running or 0 if DOS version.
b 1 if current PC is colour, 0O if mono.
c 1 if blinking is enabled on PC, 0 if not.
d 1 if this PC has a mouse tHaistAccessan use, O if not.

Note This sequence combines several AiF sequences into one. In time, we will extend the
information returned by this sequence, and for this reason we recommend that developers use this
sequenci preference to the individual sequences to get serial number, blinking status, etc.

Capturing Screen Text

As well as being able to dump the current screen text to an attached local printer or to a DOS file,
you can also serthat same screen text up to the host. This screen text can then be sent on to the
system printer, saved in a file or indeed used anywhere else on the host system.

Upon sending the appropriate sequence, the PC will send the screen text back toatie liveest. E
of the screen is sent to the host with allprimtable characters replaced by spaces and terminated
by a carriage return.

Developer’s Guide 201

CHAPTER 3 AIF UTILITIES

Capturing Screen Text AiF Sequence
Use the following AiF sequences to capture screen text.

ESC[=2i
or
ESC[2;ni
Where:
n Is the optional parameter determining which screen is sent to the host, as:

HostAccesseturns the screen to the host with each line separated by a carriage
and adds a leading and trailing start of text (ASCII value 002) character. The fo
the reply to this AiF sequence is:

<STX> <CR> linel <CR> line2 <CR> ... lineN <CR> <STX> <CR>

Where:
<STX> Is the start of text character (ASCII decimal value 002).
<CR> Is a carriage return (ASCII decimal value 013).

linel ... lineN Is each line of the screen. The number of lines will vary dependi
upon the current screeanfiguration.

Capturing Screen Text Example

As each line of the screen is terminated by carriage return, a simple program can be written to
retrieve each line of the screen image into an array.

For example:

screen =
counter =1

send to PC 'ESC[=21"
echo off
loop input resp until resp equals STX do repeat
loop
input line
until line equals STX do
screen(counter) = line
counter = counter 1
repeat
echo on
display counter:"screen lines sent to host"

Notes: Host echoing of terminal input must be switched off before requesting the screen image.
Otherwise, the user's application screen will be corrupted.

202 Developer’s Guide

AIF UTILITIES CHAPTER 3

This feature can be very useful for documenting applications screens as well as giving users the
ability tocapture any screen at any time back to the host system.

Another method of (automatically) sending the host session's screen back to the host would be to:

1. Assign the DOS Print device to a DOS file name.
2. Send the ANSI sequence to "print screen”

3. File transfethe DOS file up to the host.

This method may be simpler in some circumstances and would enable you to capture IBM graphics
within the screen.

Changing Emulation

In some applications areas it may be useful tdebwalhange the current terminal type that
HostAccesss emulating. A special AiF sequence is provided for this.

ESC[=n{
Where:

n is the emulation number for the required emulation as follows:
0 VT100 11 SM 9400
1 VT220 (7 bit) 12 Ansi
2 VT220 (&it) 13 Videotex
3 Prism8/9 14 Microfusion
4 Prism9 Ansi 15 Ampex
5 QVT119 16 TV1RO
6 Wyse50 17 Galileo
7 Wyse60 { The literal character '{'.
8 AddsVp
9 UCL Term
10 DG 216

Changing Emulation Example

Applications which invoke othapplications specifically enhanced for different terminals can now
swap between the required emulation. In practice, this only occurs very rarely. However, we do
know of one application that was built around one terminal type but has later been erdadinced to
another "woreprocessing" application that was specifically targeted for a different terminal type.

Notes: Changing emulations will effectively reset the terminal, wiping out all previous backpages,
screens, slots etc. If the previous environnesasnto be saved, use the AiF sequence to "push
environment”, in Save Environment on pbdié

Developer’s Guide 203

CHAPTER 3 AIF UTILITIES

File Transfer
Use the following AiF sequence to start a file transfer:.

ESC _ mode ; hostdriven ; 1; append ; 0; protocol ; ist ; direction local ;
Remote {; FTP server} {; username} {; password} ESC \

Where:
Mode 0 = binary.
1 =text.

hostdriven 0 = Displays progress dialog during the transfer. Use
must close the dialog manually once the transfer is
complete.

1 = Displays progress dialog during the transfer and
automatically closes the dialog once the transfer is
complete (DOS.PICK Flag = H).

2 = Suppress all progress output (DOS.PICK Flag = .
append 0 = Overwrite destination file.
1 = Apperd to destination file.

Note: If using protocol number 9, this parameter is
ignored.

protocol 0 = Proprietary.
1 = Kermit.
2 = X/Ymodem.
3 =Zmodem.
9=FTP
ist 0 = Transfer is to local PC file (normal).
1 = Intersession file transfer.

Note: If using protocol number 9, this parameter is
ignored.

direction { = Send file to host.

} = Receive file from host.
local Filename on the PC.
Remote Filename on the host.

ftp server The FTP server address.

204 Developer’s Guide

AIF UTILITIES

username

password

For example:

Note: Only relevant when using protocol 9.

The username to be used when connecting to the FT
server

Note: Only relevant when using protocol 9.
The password for the username above

Note: Only relevant when using protocol 9.

ESC_1;0;1;0;0;3;0{c: \monkey.txt;pig ESC\
Will start a Zmodem file transfer to send thédilenonkey.txton the PC to the filpig on the

host.
FTPexample

CHAPTER 3

ESC_0;2;1;0;0;9;0;}c: \dn\drivers.zip;/services/technet/drivers.zip;ftp.microsoft.com;anonymous;

passwordESC \

Will download théinaryfile /services/technet/drivers.zip' from tfig.microsoft.confitp server
into the local file \adn\d r i v e Nasprogrésg dialog will be displayed.

Developer’s Guide

205

Chapter

Dynamic Data Exchange

The following topics how DDE works and summarise the DDE Escape sequences. They explain
how you can use DDE withostAccessDDE Client support and DDE Server support.

How DDE Works

Dynamic Data Exchange(DDE) is used to transfer data between Windows applications.

Two applications that participate in DDE engage in what is known asc@bDi2Esation The
application that initiates the conversation is known elethieapplication, ahthe application
that responds to the client is known aséneerapplication.

Any Windows product that supports DDE as a server application mussbaxer aame For

example, the server name for Word for Windows is WINWORD and for Quattro B8\ is

To initiate a DDE link with a server application, you would normally use the server name and this
would return @hannelnumber. Using this channel number you would then send commands
(normally in the format of the macro language supported by veatagglication) and finally close

the link with that channel number when all processing is completed.

When communicating with a server you must also always SjegéifyServer applications can
support many topics depending on which part of that agpliGoou want to communicate with.

For instance, if you want to request information from Quattro Pro on a specific spreadsheet, the
server name would be QPW and the topic name would be the spreadsheet name.

DDE was designed to form a standard way of caricating between Windows applications.
However, the fact that each Windows application supports DDE differently (or sometimes not at
all) makes it more difficult for the novice to understand it or become involved with it.

If you want to program using DD¥u will have to learn as much, if not more about the server
application that you want to talk to, rather than if you were a direct user of the product itself.

Developer’s Guide 206

DYNAMIC DATA EXCHANGE CHAPTER 4

DDE Sequences: Summary
ESC _9d SN;TP ESC\ Close a DDE link already established with Initiate DDE
sequence.

ESC_2;TMdSN; TP; MAESC\ Send commands to seragplication.

ESC _1d SN;TP ESC\\ Open a DDE channel with a server.
ESC_3; TMd SN;TR;IT;STESC\ Pass data to server.
ESC _4; TMd SN;TP;IT ESC\ Retrieve data from server.

Using DDE with HostAccess

You can use DDE to ustostAccesas aDDE client to other Windows applications (servers),
sending datand instructions from the host to a Windows application. This gives your own host
programs and applications almost total control over any other Windows product.

Using DDE withHostAccessyou only need to specify the server name for any DDE process.
HostAaessautomatically keeps track of channel numbers internally for you.

All Windows applications support a general topic sgstem Unless you are setting up more
complicated DDE links, this topic should be more than adequate for most devAlbpéthe(
HostAcces®ASS.TOs for Windows use the SYSTEM topic).

You can also use DDE to udestAccesas a DDE server. You can write Windows programs in
such applications as Word or Excel, which can send and receive data to and from the host software.

Note: Youmust have a resilient link from the PC to the host. DDE cannot work remotely unless
full flow control and error checking are in place.

Developer’s Guide 207

CHAPTER 4 DYNAMIC DATA EXCHANGE

DDE Client Support

The following topics descritiee AiF sequences used to connect, communicate, and disconnect
between client and server applications in a &Dionment.

You should have a full knowledge of DDE before using these features.

Initiating a DDE Conversation
To open a DDE channel with a Windows application, use the following AiF sequence:
ESC _ 1d Server ; Topic ESC \

Where:
Server Is the Server name of the application.
Topic Is the Topic fothat application.

If a link is already open to this server and topic it wilkumsee

DDE Response Format
The DDE initiate response will be:
<STX> <CR> status <CR>

Where:
<STX> Is the start of text character (ASCII decimal value 002).
<CR> Is acarriage return (ASCII decimal value 013).
status Is 0 if successful and > 0 otherwise, as follows:

1 - Application link not open (no initiate).
2 - Timeout.

3- Topic not supported by application.

4 - No DDE channels available.

5- Server closed.

6 - Sever busy.

7 - Server NAK (Not Acknowledge).

208 Developer’s Guide

DYNAMIC DATA EXCHANGE CHAPTER 4

Sending Commands to the Server

To send commands to the server application (to allow it to be driven and updated automatically),
use the following sequence:

ESC _2; Timeout d Server ; Topic ; Mstring ESC\
Where:

Timeout If used sets the timeout on DDE commands to that number of seconds. If a
macro being passed is going to take a long time it is sometimes worth using
valle to stop the DDE terminating on a timeout (NAK).

Server Isthe Server name.
Topic Is the Topic name, normally SYSTEM.
Mstring Is the macro string in the format expected by the DDE server application.

A successful DDE Initiat®ushave been made with Server name and Topic before the macros can
be sent.

For example:

[FileOpen.Name = "C:\WINWORD\TEST.DOC"][FileOpenDataFile.Name etc.,]
or

{FileOpen C:\QPWATEST.WB1}{COLUMNWIDTH A1..C20,1,2,3}{etc.,}
Multiple mam commands may be passed using the above square brackets to separate each macro
command. Some products (like Quattro Pro) seem to prefer curly square brackets rather than
normal square brackets like most other Windows applications. Please check thiatimcdione
the Server Application if normal square brackets do not work.
Response Format
The DDE initiate response will be

<STX> <CR> status <CR>

Sending Data to a Server (Poke)

This sequence allows data to be passed directly to another Windows application (the server). Most
DDE servers have defined elemeitgsns) that the server knows about, which can accept data
from DDE clients. For example, R1&81he item name for some spreadsheet packages.

A successful DDE Initiate must have been made with Server name and Topic before the data can
be sent.

Developer’s Guide 209

CHAPTER 4 DYNAMIC DATA EXCHANGE

ESC _ 3; Timeout d Server ; Topic ; Item ; String ESC\

Timeout If used sets the timeout on DDE commarwdthtait number of seconds. If a DD
macro being passed is going to take a long time it is sometimes worth usin
value to stop the DDE terminating on a timeout (NAK).

Server Is the Server name.

Topic Is the Topic name, normally SYSTEM.

Mstring Is the macro string in the format expected by the DDE server application.
Item Is the Item name recognised by the DDE server.

String Is the string of data to put into IT specified above.

The response will be:
<STX> <CR> status <CR>

Requesting Data from a Server

This sequence allows data to be retrieved directly from another Windows application (the server).
Most DDE servers have defined eletmerhich the server knows about (catésds) where
specific pieces of information reside.

A successful DDE Initiate must have been made with Server name and Topic before the data can
be retrieved.

ESC _ 4; Timeout d Server ; Topic ; Item ESC\
whereTimeout, Server Topic andltem are as defined above.

The response will be

<STX> <CR> status <CR> string <CR>

string is the data held as returned from the Server application. The data may be tabbed or comma
delimited, dependeon the server application.

Close DDE Link

This sequence closes a DIk already established with the Initiate DDE sequence. It is
recommended that you close DDE links wdrgnDDE conversation is completed.

ESC _9d SN;TP ESC\
Where

SN Is the Server name.
TP Is the TOPIC of the DDE session to close conversation with, normally SYSTEM.

DDE Server Support

210 Developer’s Guide

DYNAMIC DATA EXCHANGE CHAPTER 4

You can uselostAcces$o act as a DDE server to Windows applications such as Word and Excel,
sending data to the host, receiving data from a host and allowing the Word or Excel application to
obtain the results.

Any Windows product that supports DDE as a servecafpii must haveserver nameIn
HostAccesss case this i s:

Servername: HA7
The following operations are supported:
DDE Requests:
Topic System
ltems Topics Returns a list of available topics
Formats Returns a list of supported forma

Sysltems Returns a list of supported items

for this topic
Topic Session hame
Items CursorPos Returns the current cursor locatit

ScreenSize Returns the current screen size

RyCxNc Returns text from screen
(RXCxNx) where R=row,
C=column, N=no. of characters t

read
Iltems Returns a list of supported items
for this topic
DDE Execute:
Topic Session hame
Items <Empty> Executes a macro or macro

command. To execute a macro,
supply the path to the macro file.
To execute a macro command p
fix the commanaith * e.g.

*PRI NT “Hell o Vv

DDE Poke:

Developer’s Guide 211

CHAPTER 4 DYNAMIC DATA EXCHANGE

Topic Session name

ltems Keys Send keys as if they were typed
the keyboard. These are in the
mnemonic format as described i
the mnemonic key code table e.(
CR for carriage return, ES for
ESCape, F1 fdunction key 1, etc

Network Send data to the host

DDE Example

The following WordBasic example provides a list of the available system items, topics and formats
supported by the application:

Sub MAIN
DDETerminateAll
n = DDElInitiate(fAHA70, fAsystemo)
a$ = DDERequest$(n, ASysltemso)
MsgBox(a$, fASysltemsod)
b$ = DDERequest$(n , ATopicso)
MsgBox(b$, fATopicso)
c$ = DDERequest$(n , fAFormatso)
MsgBox(c$, AFormatso)

DDETerminate n
End Sub

Some applications that support DDE: Microsoft Worthfimdows, Excel, Visual Basic.

212 Developer’s Guide

Chapter

Using the Macro Language

TheHostAccessacro language is a simple and powerful tool that allows you to autordatd st
tasks. For example, you can use the macro language to automate your login procedure, or to call a
Windows application and run a set of tasks within it.

This chapter describes all the features provided in the macro language, and how to use each one.
The example provided at the end of this chapter demonstrates the power of the macro language.

This documentation assumes that you are familiar with basic programming concepts, such as loops,
variables, expressions and commands.

Syntax Conventions

Each command described has an associated syntax diagram, to help you understand the exact usage
of the command. These diagrams should be intuitively clear. In case of confusion, refer to the
following table for explanations of the conventiors use

Symbol Meaning
>b Start of a command.
>> Continuation character.
b>< End of a command.
| New line.
bdb A bdb Either A or Bmust be chosen.
cb B bb
bdbbbbbdb Either A or Bmay be chosen.
b A bd
cb B bb
<<< A may be repeated.
bAbB
<< As above, but each repetition must be separated by a cor
bAbB

Developer’s Guide 213

CHAPTER 5 USING THE MACRO LANGUAGE

Commandsare described in upper case (and emphasised in bold in the syntax diagrams).
Variables proceduresandfunctions are described in lower case. The macro language itself is
casesensitive for variables, procedures and function names, but not for command statements.

Using AiF Escape Sequences

You can use the macro language to send and receive AiF escape sequences.

AiF escape sequences are normally sent from the host to the PC, and replies are returned from the
PC to the host. Under some circumstances, however, you may want to control the operations
entirely from the PC; for example, when you have no control ovepeooesin.

Use the PRINT command to send an AiF escape sequence, and the INPUT command to read a
reply from the AiF.

Declaring Variables

Before using a variable, you must declare it. To declare a variable, use onewinie foll
statements:

DIM : for local declarations.

GLOBAL : for global declarations. Global variafiest be declared, and survive between
macro programs amtbstAccessessions. Therefore, we recommend you limit the number
of global variables declared.

> >

Examples
DIM a, b, ¢ AS INTEGER

GLOBAL name AS STRING

Syntax
<<, <<<
>bbdb DIM bbbbdb variable bb AS bdb INTEGER bdbbbbbbbbbb><
cb GLOBAL LD ¢b STRING bbb

214 Developer’s Guide

USING THE MACRO LANGUAGE CHAPTER 5

Using Functions

Use dunction as an gxession, which returns a value. Define functions with the FUNCTION ...
END FUNCTION command, and call them as expressions.

Example
FUNCTION squareadd(b AS INTEGER,c AS INTEGER) AS INTEGER
REM returns the square of two parameters b and c
squareadd=b*b + c*c
END FUNCTION

LEf a = squareadd(14,6)

Syntax
>b FUNCTION name bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbib AS type | bbbbbb>>

Cb (dbbbbbbbbbbbbbbbbbbbbd) bD

b <<<k<<, <<k b

cb variable AS type bbb
<KL, LKL

>>bb declaration bb name = expression bdbbbbbbbbdb | END FUNCTION b><
Cb code bb

Developer’s Guide 215

CHAPTER 5 USING THE MACRO LANGUAGE

System Functions
Following are descriptions of the system functions available with the macro language.

Name Purpose Call As
Chr$ Converts integer to string character. Chr$(n)
Field$ Returns the nth item from the string list, where e Field(list,s,n)

item is separated by the string s.
For example, Field$("“tl

“wor | d”.
Id$ Used witithe INPUT command. [d$(string)
Index Returns the starting character position of string2 Index(stringl,string2)

within stringl. 0 is returned if string2 is not founc
within string1.

For exampl e, I ndex (" he
Left$ Returns the n leftast characters of string. Left$(string,n)
Len Returns the number of characters in a string. Len(string)
Lower$ Returns every character within the string as lowe Lower$(string)
case.
Ltrim$ Returns string argument without leading spaces. Ltrim$(string)
Mid$ Returns (m characters of) the string from charac Mid$(string,n) or
onwards. Mid$(string,n,m)
Reply$ Used with the INPUT command. Reply$(string)
Right$ Returns the n rightmost characters of string. Right$(string,n)
Rtrim$ Returns stringrgument without trailing spaces. Rtrim$(string)

Screen$ Returns the word found from the screen at x,y. | Screen$(x,y)
is set to O the whole line will be returned.

Trim$ Returns string argument without trailing or leadir Trim$(string)
spaces, and collapses migltgpaces.

Upper$ Returns every character within the string as upp: Upper$(string)
case.

Val Returns the numeric value of a character string. Val (string)

216 Developer’s Guide

USING THE MACRO LANGUAGE CHAPTER 5

Name Purpose Call As

Waitkey$ Waits for user to press a key, then returngelyads Waitkey$
a string.

Developer’s Guide 217

CHAPTER 5 USING THE MACRO LANGUAGE

Using Procedures

Callproceduresto perform specific discrete actions, and then return to the calling point in the
program. Define procedures with the SUB ... END SUB command, and call them using the CALL
command.

To terminate a procedure (for example, on an error), use the EXIT SOBIk&g returns
control to the calling program.

Example
SUB greet(name AS STRING)
PRI NT fiHell o World fromod; name

END SuUB

CALL greet (ADavid B.o0)

Syntax
<KL, LKL
>b SUB name bbidbbbbbbbbbbbbbbbbbbbbbbbbbbbbbdb | declaration | bbb>>
¢b (dbbbbbbbbbbbbbbbbbbbbd) b
b <<<<<< | << b

Cb variable AS type bb

>>bbdbbbbbbbbd bbd bbbbbbbbbbbbdbbdbbbbbbbbd | END SUB bbbbbbbbbbbbbb><
Cb code bb ¢b EXITSUB bbb cb code bb

218 Developer’s Guide

USING THE MACRO LANGUAGE CHAPTER 5

Macro summary

Command Description Example

CALL Calls a (previoustiefined) CALL SubProcedure()
procedure.

DELAY, Delays a set number of seconds, DELAY 5

DELAYTILL until a specified time.

DIM Declares variable as INTEGER ¢ DIM a AS INTEGER.
REAL.

DO (WHILE) ... Starts a program loop, continuing LET A=10

LOOP while the WHILE condition holds, Do WHILE A>=2
exited when WHILE condition is LET A=A-1
fulfilled. PRINT A

LOOP

END Stops a macro.

EXIT Exits from the current loop or IF EXIT FOR
statement. For example, to exit a
FOR loop.

FOR ... NEXT Creates a loop of a specific durat FORi=1TO 10

GOTO Transfers control to a part of a L20: : PRINT A
program with a prdefined label. GoTOL20

IF ... THEN ... Specifies one or more actions to

ELSEIF take if a condition is fulfilled.

LET Assigns a value to a variable. DIM A AS INTEGER
Variables must be declared with LETA=5.
DIM before being assigned.

PASSKEYS Suspends macro processinglimy PASSKEYS
the user to enter keystrokes to th
host.

PASSKEYSNOCR Suspends macro processing to a PASSKEYSNOCR
the user to enter keystrokes to th
host—does not send the final Ent
to the host

PRINT Prints a text message tothe HoSIPRI NT AHELL 0o
the sesion screen, or to the status
bar.

REM Used for code comments. REM This will automatically log

REM you onto a host.

Developer’s Guide 219

CHAPTER 5 USING THE MACRO LANGUAGE

SELECT Selects alternative actions based
specified conditions.

220 Developer’s Guide

USING THE MACRO LANGUAGE

Command

Description Example

CHAPTER 5

SENDTERM
SEND, SENDWIN

WAIT (TIMEOUT)

WHILE ... WEND

Sends text tthe host. SENDTERM PASSWORD, CHR$(13)

Sends special characters to the t
or to the currenthactive Windows
application.

Waits for a host response WAIT TIMEOUT 20
(optionally, for a maximum timeol
period).

Specifies a loop containing one o DIM B AS INTEGER
more instructions to be carried oL WHILE B >=1
whilst a condition holds. PRINT B
LETB=B -1
WEND

Developer’s Guide

221

CHAPTER 5 USING THE MACRO LANGUAGE

CALL

Use this command to call a previodsifined procedure. Dependingthe procedure, the call
may pass parameters to the procedure.

See pagel8for more details on using procedures.

Syntax

>b CALL subname bdbbbbbbbbbbbbbbdbbbbbbbbbbbbbbbbbbbbbbbbb><
Th <<<<,<<< bd

cb expression bb

DELAY

Use the DELAY command to insert a delay into your programs of a specified number of seconds.
The following example will insert a delay of 20 seconds.

Example
DELAY 20

Syntax
>b DELAY seconds bbb><

DELAYTILL

Use the DELAYTILL command to insert a delay into your program, until a specified time. The
following example will delay the macro processing until 10:30.

Example
DELAYTILL 10:30

Syntax
>b DELAYTILL hh:mm bbb><

222 Developer’s Guide

USING THE MACRO LANGUAGE CHAPTER 5

DO

This command allows you to create a program loop. This loop will end whesspleeifiesl
condition is fulfilled. Use the EXIT DO keyword to exit the loop early doree, on error).

Example 1
LET a=10

DO WHILE a>=2
LETa=a -1
PRINT a

LOOP

Example 2
LET a=1
DO
LET a=a+1
PRINT a
LOOP UNTIL a>10
Syntax
>b DO bbdbbbbbbbbbbbbbbbbbbbbbbbdbbdbbbbbbbbbbbbdbbdbbbbbbbbbbbdbb>>
Tb WHILE bdb condition bbb cb | code | bBD c¢b EXITDO bb
cb UNTIL bb

>>bbdbbbbbbbbbbbbdb LOOP bdbbbbbbbbbbbbbbbbbbbbbbbdbbbbbbbbbbbbbbb><
Cb | code | bb Db WHILE bdb condition bb
cb UNTIL bb

Use this command to stop yquiograms (under normal circumstances).

Syntax
>b END bbb><

Developer’s Guide 223

CHAPTER 5 USING THE MACRO LANGUAGE

EXIT

Use this command within a loop (whether FOR, WHILE, DO, SELECT or WAIT), to exit from
the current loop in your program.

Alternatively, you can add the name of the loop as a qualifier, for example EXIT FOR.

Example

DIM i as integer

FORi=0TO 10

IFa=0THEN
REM At end of list, jump to after NEXT loop
EXIT
ENDIF
NEXT i

Syntax
>b EXIT bbb><

224 Developer’s Guide

USING THE MACRO LANGUAGE CHAPTER 5

FOR ... NEXT

Use this command to create a loop of a specific duration, counting up from one value to another.
Use the STEP keyword to alter the size of the step when counting (by default, SEEmdd} as

Use the EXIT FOR keyword to exit the loop early (for example, on error).

Example
FORb=1TO 17 STEP 4

PRINT b
NEXT b
Syntax
>b FOR variable = expression TO expression bdbbbbbbbbbbbbbbbbbbbdb>
cb STEP expression bb

>b | bdbbbbbbbbdbdbbbbbbbbbbbbdbdbbbbbbbbdb | NEXT bdbbbbbbbbbbbbdb><
¢b code bbb c¢b EXITFOR bbb c¢b code bb c¢b variable bb

GOTO

Use this command to transfer control to a part of your program with-fefipes label. The
label must not be purely numeric.

Example
LABEL:

PRINT a

GOTO LABEL

Syntax
>b GOTOlabel bbb><

Developer’s Guide 225

CHAPTER 5 USING THE MACRO LANGUAGE

IF ... THEN ... ELSEIF
Use this command to specify @nenore actions to be taken if a condition is or is not fulfilled.

Use the ELSEIF keyword to specify one or more alternative conditions to check for, if the first
condition is not fulfilled.

Example
IF a<=b THEN

IF a=b THEN
PRINT "Equality”
ENDIF
ELSHF a<b THEN
PRINT "a smaller than b"

EXIT IF
ELSE

PRI NT Aa | arger than bo
ENDIF
Syntax

<LLLLLLLLLL L L L LKL | <L
>b IF condition THEN| code | bdbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbdb>
cb ELSEIF condition THEN| code | bb

>bdbbbbbbbbbbbbbbbbbdb END IF bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb><
Ccb ELSE | code | bb

226 Developer’s Guide

USING THE MACRO LANGUAGE CHAPTER 5

INPUT
Use this command to input an AiF reply into a string variable. The format of the reply will be:

<STX>n<CR>message<CR>

Use theReply$() function to readnessage and thed$() function to readh. These components
depend on the AiF escape sequence sent, and the reply received. Refer to Chapters 3 and 4 for
details of AiF escape sequences available.

Example

This example prints (sends) an AiF escape sequence determined bysthgusmiog$then
reads the reply into the striregurn$. It then reads theessagecomponent of the reply into the
stringmsg$

In this example, the AiF sequence senttisktccesdor its version number, then puts the reply
into a string, and prints this information to the screen.

DIM Sequence$ as STRING
DIM msg$ as STRING
DIM return$ as STRING

Sequence$ = CHR$(27) + #A[=1co

Print sequence$: REM send AiF sequen ce

REM

Input return$: REM read reply

msg$ = reply$(return$)

PRI NT AVersion Number is: o + msg$

Note: sequence$, return$ and msg$ need to-defimed via the DIM command as shown.
Reply$ is a system function, see page

Syntax
>bbINPUT string bbb><LET

Developer’s Guide 227

CHAPTER 5 USING THE MACRO LANGUAGE

LET

Use this command to assign a value to a variable.

Example
LET a=10

Syntax
>bbdbbbbbbbdb variable = expression bbbbbbbbbbbbbbbbbbbbbbb><

Cb LET tb

PASSKEYS

Use this command to suspend macro processing, to allow the user to enter keystrokes be passed to
the host. The user keyboard input is passed until the Enter key is pressed. This Enter key is passed
to the host as a carriagiire and the macro the resumes processing at the next line.

For example, a “login” macro can effectively pause wh
held within the macro) and then continue with invokin
Syntax

>b PASSKEYS bbb><

PASSKEYSNOCR

Use this command to suspend macro processing, to allow the user to enter keystrokes be passed to
the host. The user keyboard input is passed until the Enter key is phes&aedeiTkey is not
passed to the host and the macro the resumes processing at the next line.

Syntax
>b PASSKEYSNOCBbb><

PRINT

Use this command to print out a text message, to the Hostsess$imn screen, or to the status
bar.

The PRINT command moves onto the next line when finished, unless the PRINT statement ends
inasemc ol on (“;”) or comma (“,”) character.

Use the comma character to separate printed items with a tab.
Use the sentoloncharacter to print items with no spacing.

Use the plus character to print items with no spacing.

228 Developer’s Guide

USING THE MACRO LANGUAGE CHAPTER 5

Example
PRI NT fAHell oo |, oo |, ifTher eo
PRI NT fiHell oo ioo ; ATher eo
PRI NT fiHell od + A00 + ATher eo
Syntax

>b PRINT bdbbbbbbbbbbbbbbbbbbbbdbbbbbbbbbbbbbbbbbbbbbbbbbbbb><

b <<k« , <<<<<< b
Cb expression bdbbbbbd
b, bd
Cb ; bb

Use this command to put comments in your code.

Syntax
>b REMremark bb><

SELECT

Use this command to define alternative actions based on specified conditions more easily than with
the IF command.

Use the DEFAULT keyword to specify the default action to be taken (if no conditions. are met)
Note: you can use the EXIT SELECT keyword to exit from the SELECT construct.
Syntax

<LLLLLLLLLKL) <L

>b SELECT | CASE expression | bdbbbbbbbbbbbbbbbbbbbbbbbbbbbbdbbbbbb>>
cb CASE expression | code | bb

>bdbbbbbbbbbbbbbbbbbbbbdbb END SELECT bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb><
¢b DEFAULT| code | b

Developer’s Guide 229

CHAPTER 5 USING THE MACRO LANGUAGE

SENDTERM

Use this command to send text to the host.

Syntax

<L

>b SENDTERMstring bbb><

SEND and SENDWIN

Use the SEND command to send special character codes to the host. This sends data to the host as
though the user had pressed the keys on the keyboard. Sosifehe r epr ograms t he * 1° key

‘Hell o’ then the sequence SEND “1”" would send the str
Use the SENDWIN command to send special character codes to the aotigathyindows

application.

Example

SEND A6Hel |l oCRber ed

Syntax

<<<<<<<
>bbdb SEND bbbbdbbb fi k e y ¢ 0 BHblsbbbbbbbbbbbbbbbbbbbbbbbbbb><
cb SENDWINBLD

Wherekeycodeis one of the mnemonics or special characters defined below:

Mnemonic Represents Character Represents

LA Left Arrow A Control function.

RA Right Arrow @ Alt function.

UA Up Arrow # Shift function.

DA Down Arrow F Function key.

PU Page Up S Shift + function key.
PD Page Down C Control + Function key.
Mnemonic Represents Character Represents

HM Home A Alt + Functionkey.

230 Developer’s Guide

USING THE MACRO LANGUAGE CHAPTER 5

EN End Wnn Wait time in 55 millisecond units
(clock ticks, about 18.2 per second)
where nn is from 1 to 255.

IN Insert WP Wait for user key and then pass it o

DE Delete WE Wait for user key and then throw it
away.

TA/TB Tab wB Wait until keybuffer is empty.

ST/BT Shift Tab BR Break.

(=Back Tab)

ES Escape ‘'t ext ' Enclose literal text within single
guotes.

BS Backspace

SP Space bar

CR Enter

LF Ctrl-Enter

DQ The double quote "

SQ The single quote

WAIT

Use this command to wait for a host response.

Use the TIMEOUT keyword to specify a maximum wait period, and then the same keyword (after a
CASE keyword) to specify any action to be taken after that period has passed.

Use the CASE keyword to specifyabgon to be taken if a specified string is seen.

Note: You can use the EXIT WAIT keyword to exit from the WAIT loop.

Developer’s Guide 231

CHAPTER 5 USING THE MACRO LANGUAGE

Syntax

>b WAIT bdbbbbbbbbbbbbbbbbbbbdbbdbbbbbbbbbd bbbbbbbbbbbbbbbbbbbbbb>>
cb TIMEOUT seconds bb cb x,y bbbb

Sh <<<<<<K<K< | <K<K <<

<, <<
>b CASE string | code | bbdbbbbbbbbbbbbbbbbbbdb END WAIT bbbbbbbbbbbb>>
cbTIMEOUT | code |bb
Example
DO

WAIT TIMEOUT 30
CASE fipassword: o

PASSKEYS : REM allow user to enter password

CASE #fAl ogin:o
SENDTERM fiDavi do : REM enter

CASE n$ n : REM end
END

CASE fi(ansi)o : REM Send
SENDTERM AVT1000

TIMEOUT
PRI NT AGive upo

END WAIT

LOCP

a |l ogin
script at
ter mi nal

232 Developer’s Guide

name
t he

type

USING THE MACRO LANGUAGE CHAPTER 5

WHILE

Use this command to specify a loop containing one or more instructions to be carried out whilst a
condition holds.

Use the EXIT WHILE keyword to exit the loop early (for example, on error).

Example
DIM t AS Integer
LET b =10
WHILE b >=1
PRINT b
LETb=b -1
WEND
Syntax
>b WHILE condition bbbdbbbbbbbbbbdbdbbbbbbbbbbbbbbbbd bdbbbbbbbbbbdbb>
Cb | code bb cb |EXITWHILE bbb cb | code bb

>b | WEND bbb><

Developer’s Guide 233

CHAPTER 5 USING THE MACRO LANGUAGE

Macro Example

The following example demonstrates the power of the macro language. This-isgin taditity,
which will automatically log you into a Unix machine, given the correct password.

DIM retries AS Integer
DIM psw$ AS String

DIM i AS Intege r
DIM s AS String

FOR retries=1TO 3
SEND "'root' CR" : REM send user name to host
WAIT TIMEOUT 10 : REM wait 10 seconds
CASE "Password:"
s=Chr$(27) +" "+5+""+10+""+16+""+ 16 +
"1;0;0J" + ;" + "Password:" + Chr$(27) + " \ "
PRINT s;
INPUT psw$: REM read user reply (password)
psw$= reply$(psw$)
SENDTERM psw$,chr$(13) : REM send password to host
DEFAULT
PRINT "No idea. An y clues?"
EXIT FOR
END WAIT
REM if host asks for terminal type, reply
WAIT TIMEOUT 4
CASE "(ansi) "
SEND "vt220' CR"
DEFAULT
EXIT FOR
END WAIT

WAIT TIMEOUT 4 : REM wait for host to print a prompt
CASE "#"
EXIT FOR
END WAIT
NEXT : REM And try again

IF retries >= 3 THEN

PRINT CHR$(27) + "_X" + CHR$(27) +" '
REM terminate HostAccess after 3 tries
ENDIF

234 Developer’s Guide

wi t h

ivt 2200

Appendix

Describing Images

When using Windows AiF escape sequences that refer to buttons, you can describe button images
for a particular button in great detail.

A You can define images to suit your reqaingsn

A You can store image definitions in your (u:
use in your applications programs.

A You can display bitmaps or icons, either as separaterfifest(.ico files) or as part of a

resource (a&xeor .dll file).

The facilities described here give extensive and powerful tools to customise your display. However,
you can use the most simple features, to display images quickly.

Image Types

There are three ways of referring to images:

A Simpleémages.
A Images with labels attached.
A Images with button window descriptions.

How to Describe Images

To describe images in a Windows AiF escape sequencémasge apecification string This
can be embedded within an AiF escape sequence, or cad eefpien e d hab.iniflae e user ' s
(for the 16 bit product) ardh7.inifile(for the 32 bit product).

An image specification string contains several parameters, separated by conpauasn&tzch
takes the form:

name = value

wherenameis the parameter name afaduieis the value for that name. For example,
filename=c:\ images helpbut.bmp is a parameter.

As each parameter is named, parameter order is unimportant, although we reconymend that
follow the documented order for clarity and ease of use.

Developer’s Guide 235

APPENDIX A DESCRIBING IMAGES

Conventions Used
In the following topics, image specification strings are described as follows:

{parameterl},{parameter2}, ..., {parameterN}

Whereparameterl ... parameterMre the names ofalparameters within the string. Optional
parameters are enclosed in braces.

Many parameter names and values can be abbreviated in use. Fofiexemmaean be

abbreviated th andbmp can be abbreviatedlio These abbreviations are shown in parseghe

We recommend you only abbreviate after developing and testing your code, to increase readability
during development.

Pre-defining Images

You can define and store a set of image specification strings, with labels,ar iyoages, in
the user’s ini file. You can then access these i mages

To create a labelled image:

1. Define an image specification string for your image.
2. Label this string.

3. Place the labelled string ybi#6.ini file (for the 16 bit product) aha?7.inifile (for the
32 bit product) in thelostAccesslirectory.

4. Store simple bitmap image strings in the [dibs] section.
5. Store strings for bitmap images with labels in the [images] section.

6. Store strings for bitmap inesgwith button window descriptions in the [buttons] section.

This labelling feature simplifies image use within Windows AiF escape sequences. Instead of hard
coding image specification strings directly into the AiF sequence, you can simply refepeo their |
in the .inffile.

We recommend that you make full use of this facility, for any but the most simple specification
strings.

HostAccesalso has a series of piefined images for you to usbhese images are described in the
following sections.

236 Developer’s Guide

DESCRIBING IMAGES APPENDIX A

Using Named Images
To use a hamed image from an AiF sequence, refer to it by name.

To use a named image containing a label or a button window description from an AiF sequence,
precede the name with a @ character.

Example
The following section could be itypical .ini file:
[images]

frog = filetype=bmp, filename=frog, su=1 -black
To use this image, you can then refer to it as @frog. For example, you could use:

ESC_31;10; 10;5; 5w animal ; @frog ESC \

This gives a 5x5 pubhtton callednimal at (1010), using the string labelfemt in the [images]
section of the user’s host.ini file.

Defining a simple image
To specify a simple image, use a specification string as follows:

{filename},{filetype},{id} {tilesize} ,{subst}
Where:

Name Description

filename (f) File name of the image. A default file extension is added, depending on th
type (see below). There is no default file name. You must give this parame
except when accessing an internal resouds@Si.EXE. The default file
location is the current working directory. To specify another location, give
path name.

filetype (ft) File type. Can be any of the following:
bmp (b)- .bmp file (the default).
bmpexe (be)bitmap in a .exe or .dile.
ico (i)- .ico file.
icoexe(ieJi con in .exe or .dlIIl file (

id Resource id. This selects the particular icon or bitmap resource from a .ex
file. It may be a nhame or a number. There is no defathiis- it must be given i
the bitmap is being taken from a .exe/.dll file.

Developer’s Guide 237

APPENDIX A DESCRIBING IMAGES

tilesize (ts) Tile size in pixels, given as x/y. Default is 57 by 33, which is the standard ¢
in dialog boxes for Borlasstlyle bitmap push buttons. e.g. tilesi2é/46.

subst (su) Use to substitute colours in an imagpically, to substitute the terminal
background colour for the background colour of the bitmaps. Substitution |
repeated.

Example
To use the file ‘' f\pbogt usariedodllowingspetifitationdtiing:ect ory * c:

file=c: \ pictures \ frog
Since no extension was givbmp is assumed to be the default file type.

To use this string in an AiF escape sequence, use:

ESC_31;10; 10;5; 5w animal ; file=c: \pictures \frog ESC\
This creates and displays a 5x5-pution nameénimalat (10, 10) , using our “frog. br

Colour Substitution

To substitute a colour, use either:
N-R-G-B

or:

N-name

whereN is the new (replacement) colour, RR@-B or name specifies the old colour. These
parameters are described in the following sections.

Specifying the New Colour

N is the new (replacement) colour. This is either a terminal window colour numbdi6fromisl
a Windows sysm colour, taken from the following list:

Name Colour Name Colour

Bg Desktop background hi Highlighted background
Menu Menu background hitext Highlighted text

Win Window background btnface (bf) Button background
Wintext Window text btntext (bt) Button text

Menutext Menu text btnshadow (bs) Button edge colour

238 Developer’s Guide

DESCRIBING IMAGES APPENDIX A

Name Colour Name Colour
Appworkspace Background colour for btnhi Button highlight colour
MDI apps
greytext Grey text colour

Specifying the Old Colour
To specify the colour to be replaced, you can:

A Define the colour in terms of RsG-B (RedGreenBlue) components, wheReG andB
are in the range 0..255. For examge25b is full intensity blue, an@-0 is full intensity

black
A Use a pralefined colouname, as a shortcut way of specifying common colours:
red (r) blue (b) magenta (m) white (w)

green (g) cyan (c) yellow (y) black (b)
For example, to substitute all black pixels with colour 1 fraappheation palette, use:

su=1-black
Note: this colour musxactly match the colour of the image.

Examples: colour substitution

To use the filéog in your current directory, substituting all black pixels (RGB=0,0,0) with colour
1 from the application [edte, use:

f=frog,su=1-bl

To use a bitmap inaxef or mat f il e cal i

|l ed t dbhr T, wi
and replace green pixels (RGB=0, 2

pPs
0) with th

ma

55,
f=bitmaps.dll,ft=be,id=116,ts=48/64,su=btnface-green

To display an image based on this string, you could use the following AiF escape sequence:
ESC_31;2;2;5;5wiconl; f=bitmaps.dll,ft=be,id=116,ts=48/64,su=btnface-green ESC\

This displays a 2x2age nameitonlat (5,5), using the string described above. See Chapter 2 for
further details of AiF escape sequences.

Developer’s Guide 239

APPENDIX A DESCRIBING IMAGES

Inbuilt Images
The following bitmap images are built HtstAccessand can be used by the host:

Name Description

_hand bitmap used to display the open palm image used in warning dialogs.

_applogo The *‘ appl -ithe hitmapamagelfoothemroduct, as shown in the abo
and splash boxes.

_logo The ‘' Co mptaenbitmap image for the Company producing the prodt
shown in théAbout... and splash boxes.

_sp Standard Push Button images:
This is diled bitmap image. Tile 1= Cross., Tile 2= Help, Tile 3= No, Tile 4 =
Yes/OK

_sm StandardMessage Box images. This is where the large exclamation mark, ir

symbol and question mark bitmaps
logically belongs to this set, but is in a separate bitmap because it is a diffe|
Tile 1=info, Tile 2=exalmation, Tile 3=question mark.

You can also define your own binlbitmaps.

240

Developer’s Guide

DESCRIBING IMAGES APPENDIX A

Defining Labelled Images

To include text labels in your image, use the following specification string:

{bitmap/image parameters},{label},{labelpos} {sm},{mag} {tile}
If you have a named bitmap imagedafined in your host.ini file, use Hignap parameter to

refer to it.

If you wish to define a whole image in one specificatiomagge parameters These are the
standard parameters ftafining an image.

Name Value

bitmap (bm) The label of a prdefined bitmap image.

image The filename, filetype, id, tilesize, and subst parameters, as for a sil

parameters bitmap specification string.

label (1) Text for label for the image, drawm osition offset from the tdpft of
the output rectangle by the ‘|

labelpos (Ip) Label position, given as x/y, used to decide the origin of the start of
text label. Default = (0,0).

sm Stretch mode. Possible values are:
clip (c) clip the image to the destination display rectangle.
mag (m)magnify the image as much as possible, whilst retaining as
ratio.
fill (f) stretch/compress the image to fit the destination rectangle
exactly. (default)

mag (m) Magnification factor. A pdisie or negative integer, controlling the size
an image. A negative number will reduce the size, a positive numbe
increase the size.
For example, specHy to divide the size by 2, or 3 to magnify the size
3.
Obviously;1, 0 and 1 will have effect.

tile (tl) This specifies the tile number for the image. Used when the images

Developer’s Guide

holding an array of separate images of the same size. The first tile i
The default is not to select a tiie., the whole of the source image.

241

APPENDIX A DESCRIBING IMAGES

Specifying Text-Only Labels
To specify text labels (without any bitmap images), use the following image specification string:

type=t,{label}{size}

Name Value

type (t) Sets the type: type=t (or type=text) sets image adabadxt

label (1) Text for label. This string will be drawn centered in the output rectanc
size (S) Specifies the natural size of the button, in pixels. This defaults to the

the rectangle needed to exactly hold the label, using whateverifoatgth
is being output with.

Example: Using Pre-defined images
To use animage basedonadpef i ned bi tmap i mage named sp

y=17, |l abel ‘Cancel , you could wuse either:

bitmap=_sp, type=bitmap, tile=1, labelpos=26/17, label=Cancel
or
bm=_sp, tI=1, Ip=26/17, I=Cancel
Note: This is the exact definition of the image used in the standard Cancel push button.

To use this image in a 2x4 pbsitton nameaancelat (5,5), use the following AiF escape
sequence:

ESC 31; 2;4;5; 5w cancel ; bm=_sp, tI=1, Ip=26/17, I=Cancel ESC\
To use a bitmap image, setting natural size to a magnification of 2, when rendering the image is to
be stretched/compressed whist retaining its aspect ratio, from the file frog.bmp, and sulbstituting al
black pixels (RGB = 0,0,0) with colour 1 from the application palette, use:

f=frog.bmp, m=2, sm=mag, ft=bmp, su=1-1-black
To use a text based image (i . e. an i mage not
100x32 pixels, use:

t=t, I=Cancel, s=100/32
This might be used to describe a textual button in a dialog box.

242 Developer’s Guide

wi t h

based

on

DESCRIBING IMAGES

Inbuilt Labelled Images

There are several inbuilt image specifications that you can use:

Name Description

APPENDIX A

_cancel Theimage andlabelCa nc e |

_help The
_yes The
_no The
_ok The

mage
mage
mage

mage

and
and
and

and

| abel -styltpadhputtano g o
| ab el -stylepesh button.o g o
| abel-styleush buttom. g o
| ab el -style(pldsh buttom. g o

_hand The image to go in a warning message box.

t o -gtgle push buttath.e a

_logo The image used in tAdout... and splash dialogs holding the Company logo.

_applogo The image used in tAdout... and splash dialogs holding the product logo.

_pling The image to go in an error message box.

_info The image to go in an information message box.

_question The image to go in a question message box.

Developer’s Guide

243

APPENDIX A DESCRIBING IMAGES

Defining Button Windows for Images

To include a button window description in your image specification string, use the following
parameters:

{image parameters},{border},{image}

Name Value

image The filename, filetype, tdesize, and subst parameters, as for a bitmap in
parameters specification string.

border (bd) Specifies the type of border to be drawn round the button.

pushedout (out] 2 pixel pushedut frame round contents. Suited for
decoration buttons. Uses white for lgip colour, and
BTNSHADOW for bottom right colour. This is the defau

push (p) Push button borders. Sculpted 3 pixel wide border arou
contents, displayed either as pushed in or out dependir
button select state. Uses standard Windows lmatfiours
BTNFACE BTNSHADOW and BTNHILIGHT.

frame (f) Single pixel frame round contents. Suited for decoratior
buttons. Frame drawn in Windows WINDOWFRAME
colour.

pushedin (in) 2 pixel pusheth frame round contents. Suited for
decoration buttons. Use$IBSHADOW for top left colour,
and white for bottom right colour. This is the default.

shadowed 1 pixel frame around cont
pixel shadow to the bottom and right, in BTNSHADOW

(shad) colour.

none (n) No border.

image (im) Used to refer to a named button specification for the button contents.

244 Developer’s Guide

DESCRIBING IMAGES APPENDIX A

Push button examples

To use an image with | abel *“Cancel’, with push
border=p,type=t, label=Cancel

This is a text push button.

To use the image labelled g u e st i o niihbordev,iuseh pushed
border=in,image=_question

This is the decorative sculpted question mark you sometimes see irsBteldiadog boxes.

‘

To use the image | abell ed ~_no’, use:

bd=p,im=_no

This is a standargd. ‘no’ button used in dialo
To frame borders around the image in *‘frog. bmp
use:

border=frame, file=frog
To display this image, you could use the following AiF escape sequence:

ESC_32;5;5; 15; 5w toad ; border=frame, file=frogESC\
This creates a 5x5 image labétlad at (15,5) from the above specification string.

Inbuilt button-images
The following are inbuilt intdostAccess

Name Description
_pling Decorative pusheid exclamation matiutton. Used in message boxes.
_hand Decorative pusheid hand button. Used in message boxes.

_question Decorative pusheid question mark button. Used in message boxes.
_info Decorative pushed information button. Used in message boxes.
_logo Decorative pusheith Company logo button. Used in message boxes.

_applogo Decorative pushed product logo button. Used in message boxes.

_ok Standard Borland style OK push button.
_cancel Standard Borland style Cancel push button.
_yes Standardorland style Yes push button.

Developer’s Guide 245

APPENDIX A DESCRIBING IMAGES

Name Description
_nho Standard Borland style No push button.
_help Standard Borland style Help push button.

246 Developer’s Guide

A

Accelerator character, 29
AiF for Windows
Common problems, 103
AiF sequences
Clear slots of copied
screen regions, 31
close DDE link112, 211,
214
colours, 108
detect blinking status,
108
detect colour/mono
monitor, 108
Copying a region of
screen, 30
cursor off, 110
cursor on, 110
DDE, 211, 212
execute DDE macro, 211,
213
field input
activate box input, 109
activate line input, 108
invoke window editor,
109
load exit keys, 109
host echo off, 109
host echo on, 109
initiate DDE, 211, 212
menus
load exit keys, 108
Pasting a copied screen
region, 31
request data from DDE
server, 211, 214
save environment
pop environment, 109

Developer’s Guide

push enviroment, 109
send data to DDE server,
112, 211, 213
windows
close, 108
heading, 108
open, 108
AiF TOOLKIT
Escape sequence summary,

AiF Utilities, 106
Alignment
Text, 171

B

Box Drawing, 160
Box input, 145
Examples, 147
Getting a response, 146
Buttons, 39
check boxes, 42
Creating a text button, 39
example of usage, 44
Image, 40
radio buttons, 43
reading, 45
Reading it's check state, 45
Reading which is checked,
45
setting/clearing, 45
Solving problems, 103

C

CALL
Macro, 226
Capturing screen text, 205

Index

Cascaithg menu format, 133
Centering Text, 171
Changing Cursor Shape, 166
Check boxes, 42
Clear slots
Of copied screen regions,
31
Clipboard, 56
Closing HOSTACCESS from
the host, 204
Colour
Specifying a new, 244
Specifying old to be
replaced, 245
Substitution244
Colours
ANSI standard, 113
Changing controls, 24
Changing default
scuplture, 20
Intense bit set, 114
Resetting to the default,
115
Setting default
foreground/background
, 33
Switching ANSI colour
mode on/off, 115
Combo boxes, 51
Creating, 51
example, 52
Hiding and showing, 56
Limiting text, 55
reading, 53
Reading changes, 54
Reading current item, 53
Reading the contents, 54
Reading to see if visible, 54
Selecting current item, 55
Command stack control, 180
Commands, 82

247

INDEX

addding groups, 84
changing type83
creating, 82
examples, 85
reading, 83
with toolbars, 84
Control codes, 174
Control Management
solving problems, 103
Control response format, 200
controls
root, 32
Controls
accelerator character, 29
Alternate message, 28
changing colours, 24
Creating group, 28
destroying, 23
enabling/disabling, 22
event reporting, 24
groups, 28
introduction, 14
managing, 22
repositioning, 23
Return key, 29
showing/hiding, 22
Using, 28
Copy
A region of screen, 30
Currency format, 74
Currency validations, 74
Cursor
Changing, 77

D

Data extractior,97
DDE, 210, 211, 212
Client support, 212
close link, 211, 214
Close link, 214
execute macro, 211, 213
initiate, 212
Initiating a conversation,
212
overview, 210
poke, 211, 213
request data from server,
211, 214

248

Requestindata from a
server, 214
Sending commands to the
server, 213
Sending data to a server
(Poke), 213
Server Support, 214
DDE Sequences, 211
DDE server support, 215
DELAY
Macro, 226
DELAYTILL
Macro, 226
delimiters, 15
Describing Images, 241
DisplayOptimisation, 151
Displaying images, 41
Displaying Image$®
DO

Macro, 227
DOS Gateway, 186
DOS Integration, 111
DOS Keyboard Stacker, 188
Drawing
Sculpted line49

Dynamic Data Exchange, 210

Dynamic Data Exchange
(DDE), 112

E

Edit boxes, 64

Changing tb password
character, 69

Creating, 64

Initialising a muHine edit
box, 70

manipulating, 68

reading, 66

Setting selection range, 69

Setting the selection range,

55
Using the clipboard with,
69
validated, 71
Edit examples, 73
Emulation
Changing termingfpe,
207
END

Macro, 227
Environment, 113
Erase DOS filel 22
Escape sequences

Using, 14

Escape Sequences, format of,

14
Event reporting
Enabling, 25
Events, 24
Getting, 26
Requesting, 26
Timed, 93
Events returned
Format, 183
EXIT
Macro, 228
Exit keys
Loading application, 124
User response, 124
Exit Keys, 142

F

Field input, 140
Exit keys, 141
Response, 142
Types, 140
User keys available, 141
File Transfer, 208
Focus
Setting Input focus, 27
Fonts
Changing, 91
Solving problems, 104
Using alternate PC, 169
FOR ... NEXT
Macro, 229
FORMSs, 154
Examples, 155
Files, 154
Freeze On/Off, 157
Function keys
Programmable, 173

G

GOTO

Developer’s Guide

Macro, 229

H

Host Echo On/Off, 159

IF ... THEN ... ELSEIF
Macro, 230
Image buttons, 40
Images
Closing the image
application19
Defining a simple image,
243
Defining Button Windows,
250
Defining labelled, 247
displaying, 41
Displaying19
Displaying multiple,98
Inbuilt, 246
Inbuilt button, 251
Inbuilt labelled, 249
Predefining, 242
Types, 241
INPUT
Macro, 231
Invoking Windows hel®2

K

Keyboard Control, 110
Keyboard control features,
173
Keys
Send to Windows
applications, 203

L

LET

Macro, 232
Line Drawing, 162
Line input, 143

Developer’s Guide

Getting a response, 144
Lines
Drawing sculpted,9
List boxes, 57
Creating, 57
example, 59
incremental, 58
manipulating, 62
reading, 60
Setting tabs, 63

M

Macro, 217
Declaring variables, 218
Functions, 29
Procedures, 222
Summary, 223
syntax, 217
Macros
AiF sequence, 172
Managing controls, 22
Maximise, 200
menus
commands for, 82
Menus, 89
activate cascading rsn
108
activate poglown menu,
108
AiF, 120
AiF options, 121

close cascading menus, 108

close poglown menus,
108

Colour configuring, 122

Configuring selection
characters and
separators, 123

creating, 89

Displaying, 89

enabling/disabling, 90

Enabling/disabling, 90

Exit keys, 123

load cascading menus, 108

load popdown menus, 108

Removing, 90

reset cascading menus, 108

reset poglown menus,
108

INDEX

Sets, 121

Message boxes
modal, 77

Minimise, 200

Modal message boxes, 77
Positioning, 78
Returning vales to the

host, 79
Mouse control, 182

P

Palette
Forcing reconstruction, 33
Parameter Delimiters, 15
PASSKEYS
Macro, 232
Paste
A copied region of screen,
31
Pointer
Changing, 77
Popdown menus, 125
Activating, 127
Activating cascading, 132
Cascading, 130
Clearing, 126
Closing, 128
Closing poglown
cascading menus, 134
Getting a response, 127,
133
Loading, 126, 131
Resetting, 131
Using, 126
PRINT
Macro, 232
Printing to a DOS file/device,
19
Problems
Buttons, 103
Control management, 103
Secondary windowK)3

R

Radio buttons, 43

249

INDEX

Reading Selected Display
Text, 49
Reading Selected Hidden
Text, 49
Reading String List Size, 49
REM
Macro, 233
Reporting events to the host,
24
Return key
Controls, 29
Root control
creating, 32
miscellaneous functions,
33
reading32
Root control features, 32
Root controlmanipulating, 32
Runtime status, 205

S

Save Environment, 150
Scancode keys, 176
List, 176
Switching On/Off, 175
Screen Fill Character, 167
Screen Layoul6
Screen Modes, 165
Screen sculpting, 17
colours, 17
defaul colours, 20
example, 20
sculpted boxes, 18
sculpted line4,9
sculpture mode, 18
Sculpting solving problems
Problems
Sculpting, 103
Sculpting the screen, 17
example, 20
Secondary windows, 34
activating, 37
creating, 35
destroying, 37
example, 34
hiding/showing, 38
setting output focus, 38
Secondary Windowsolving
problems, 103

250

SELECT
Macro, 233
Selection boxes, 135
activate, 108
Activating, 137
close, 108
Closing, 138
Getting a response, 138
load, 108
Loading, 135
reset, 108
Resetting, 135
SEND
Macro, 235
SENDTERM
Macro, 235
SENDWIN
Macro, 235
SLOTs, 152
SLOTS
STACK Facility, 153
Special keys
Leader character, 189
Mnemonics, 188
Special output mode, 170
Static labels, 76
Status Bar
changing, 80
hiding/showing, 80
setting pane contents, 80
setting text, 80
String lists, 46
Changing the list to be
displayed, 55
clearing, 50
Creating, 46
examples, 47
Format, 46
manipulating, 47
reading, 49
Reading size, 49
setting special characters,
50
Summary
AiF Utilities, 108
Switching Cursor On/Off,
167
System Message Line, 163
System Message Line Control,
164

T

Terminal echo, 125, 142
Text buttons, 39
Text labels
Specifying, 248
Timed events, 93
Toolbars
creating, 87
Toolbars and toolboxes, 86
adding to, 87
example, 87
hiding/showing, 86
toolboxes
commaus for, 82
Toolboxes
Creating, 86
Typeahead Mode, 180

U

Using Control Groups, 28
Utilities, 106

Vv

Validated edit boxes, 71
Changing the date, 73
creating, 71
currency validations, 74
date validations, 72
integer validations, 71
Special date strings, 72

Verify DOS File or Directory,
1%

w

WAIT
Macro, 236
WHILE
Macro, 238
Window Editor, 147
Examples, 149
Getting a response, 148
Windows

Developer’s Guide

INDEX

AiF sequences, 117 Headings and footings, Windows help
Closing, 118 119 invoking, 92
Control state, 200 Start prgram, 201
Detect if application Start program response

running, 202 format, 201

Developer’s Guide 251

