

HostAccess

Developer’s Guide

2 Developer’s Guide

Disclaimer

Every effort has been made to ensure that the information contained within this
publication is accurate and up-to-date. However, Rogue Wave Software, Inc. does not
accept liability for any errors or omissions.

Rogue Wave Software, Inc. continuously develops its products and services. We
therefore reserve the right to alter the information within this publication without notice.
Any changes will be included in subsequent editions of this publication.

As the computing industry lacks consistent standards, Rogue Wave Software, Inc. cannot
guarantee that its products will be compatible with any combination of systems you
choose to use them with. While we may be able to help, you must determine for yourself
the compatibility in any particular instance of Rogue Wave Software, Inc. products and
your hardware/software environment.

Rogue Wave Software, Inc. acknowledges that certain proprietary programs, products or
services may be mentioned within this publication. These programs, products or services
are distributed under Trademarks or Registered Trademarks of their vendors and/or
distributors in the relevant country.

Your right to copy this publication, in either hard-copy (paper) or soft-copy (electronic)
format, is limited by copyright law. You must obtain prior authorization from Rogue
Wave Software, Inc. before copying, adapting or making compilations of this publication.

HostAccess is a trademark of Quovadx Ltd in the United Kingdom and is a registered
trademark in the USA. Microsoft is a registered trademark and Windows is a trademark
of the Microsoft Corporation. Other brands and their products are trademarks or
registered trademarks of their respected holders and should be noted as such.

Copyright Ò 1993-2013 Rogue Wave Software, Inc.

Developer’s Guide 3

Contents

DISCLAIMER 2
CONTENTS 3
INTRODUCTION 5

What is HostAccess? 6
How to use HostAccess 7

AIF TOOLKIT 9
Escape Sequence Summary 10
Using escape sequences 12
Conventions used 13
Sculpting the Screen 15
Managing Controls 20
Copy and Paste 27
Root Control Features 30
Secondary Windows 32
Buttons 37
String Lists 43
Combo Boxes 49
List Boxes 55
Manipulating a List Box 60
Edit Boxes 62
Validated Edit Boxes 69
Static Labels 74
Status Bar 78
Commands for menus, toolboxes and toolbars 80
Toolbars and Toolboxes 84
Menus 87
Changing Fonts 89
Invoking Windows Help 90
Timed Events 91
ActiveX (COM) Integration 92
Common Problems 101

AIF UTILITIES 103
How AiF Sequences Work 103
Sequences Summary 105
Tailoring the Environment 110
Using Windows 114
Using AiF menus 117
Using Selection Boxes 132

4 Developer’s Guide

Using Field Input 137
Box Input 142
Save Environment 147
Display Optimisation 148
FORMs 151
Freeze On/Off 154
Host Echo On/Off 156
Applications Enhancement 157
Using Macros 169
Keyboard Control Features 170
Mouse Control 179
Programmable DOS Gateway 182
DOS Keyboard Stacker 184
Printing to a DOS File or Device 187
Data Extraction to DOS and Windows 193
Displaying Images 194
Miscellaneous AiF Facilities 200

DYNAMIC DATA EXCHANGE 206
How DDE Works 206
DDE Sequences: Summary 207
Using DDE with HostAccess 207
DDE Client Support 208
DDE Server Support 210

USING THE MACRO LANGUAGE 213
Syntax Conventions 213
Using AiF Escape Sequences 214
Declaring Variables 214
Using Functions 215
Using Procedures 218

DESCRIBING IMAGES 235
Image Types 235
Defining a simple image 237
Defining Labelled Images 241
Inbuilt Labelled Images 243
Defining Button Windows for Images 244

Developer’s Guide 5

Chapter

1
Introduction

Welcome to the HostAccess Developer’s Guide. This book is designed to help you to fully exploit
HostAccess in applications development and is divided into the following chapters:

Chapter Title Topics covered

Chapter 1 Introduction. What is HostAccess and how to make the best use
of it.

Chapter 2 AiF TOOLKiT. How to use HostAccess’s Application interface
Facility (AiF) to develop Graphical User Interface
(GUI)-like applications.

Chapter 3 AiF Utilities. How to use the AiF for screen manipulation and
DOS library routines, for example, opening and
closing windows, loading menus, controlling
printing.

Chapter 4 Dynamic Data Exchange. How to use HostAccess as a DDE client and as a
DDE server.

Chapter 5 The Macro Language. How to use HostAccess’s powerful macro language.

Appendix A Describing Images. How you can describe button images in detail using
Windows AiF escape sequences.

C H A P T E R 1 I N T R O D U C T I O N

6 Developer’s Guide

What is HostAccess?

HostAccess is really three solutions in one.

Using HostAccess as a terminal emulator, you can achieve connectivity immediately and then
enhance your screen using the autoGUI and autosculpture functions. These features are described
in HostAccess’s User Guide.

As a desktop integrator, HostAccess brings data from host applications into your familiar Windows-
and DOS-based spreadsheets, word processors and other programs.

As a rejuvenation tool you can use HostAccess to transform your host applications quickly and
easily with its extensive toolkit known as the Applications interface Facility (AiF). This has been
designed to enable host developers to rejuvenate their legacy applications without needing to totally
re-engineer them.

Desktop integration and AiF facilities are described in this Developer's Guide. If you are a PICK
user, you can also make use of an extensive set of subroutines documented in the PICK Guide,
please contact your dealer for further information.

Typical terminal screen before AutoGUI

I N T R O D U C T I O N C H A P T E R 1

Developer’s Guide 7

Terminal screen with AutoGUI

How to use HostAccess

HostAccess’s 3-stage process allows you to implement your unique IT strategy at your own pace.
Begin by creating a tailored GUI, shaping a Windows look and feel for host applications.

The next phase is to integrate your host applications into your standard desktop applications. Data
can be downloaded into any standard spreadsheet and text into any word processor. At this stage,
you are enhancing your host applications using Windows’ Dynamic Data Exchange (DDE) and
OLE automation. HostAccess’s tight integration of host data with your application server makes
data available to each desktop.

Finally, transform your host applications, changing the way they look, feel and respond.
HostAccess’s tools give your host applications access to, and control of any desktop resources.
Open up your host applications to any PC clients, including COM automation objects and ActiveX
controls.

Creating a Windows look and feel

HostAccess’s AiF toolkit allows you to give applications the same GUI as your familiar desktop.
Give your host applications any Windows control, including secondary windows, icons and buttons.
Host applications can be made faster, clearer and even fully event driven.

C H A P T E R 1 I N T R O D U C T I O N

8 Developer’s Guide

AiF is a library of ANSI-compliant escape sequences sent from the host to HostAccess using
normal terminal display functions in the host application.

AiF’s phased approach puts you in control of the speed and sophistication of your development
programme. In addition, you can drive this development with your current host application design
skills, using existing programming languages from COBOL and Basic to FORTRAN and SQL.

Desktop integration

Integrate your host applications into your standard desktop applications using DDE, a standard way
of communicating between Windows applications. You can use DDE to use HostAccess as a DDE
client to Windows applications giving your host applications almost total control over any other
Windows product. You can also use HostAccess as a DDE server - this means you can write
Windows programs in applications such as Word or Excel which can send or receive data to and
from the host. This is described in Chapter 4, Dynamic Data Exchange.

Additionally, HostAccess’s file transfer facilities puts your data where it’s most functional to users,
creating a genuine two-way environment.

Developer’s Guide 9

Chapter

2
AiF TOOLKiT

This chapter describes how you can make full use of HostAccess to create a Windows look and feel
for your host applications. First, you need to use HostAccess as a terminal emulator to run your
host applications on your PC. Initially your host applications may continue to look and work as they
have for years as they do on your old terminals

You can then choose the available GUI functions to transform your terminal screen. HostAccess
allows you to transform the terminal screen itself, allowing you to completely transform the
application's look and feel.

A wide range of functions known as the Applications interface Facility (AiF) are available to all
host developers which enables you to use these features to create a true Windows GUI appearance
for your host applications, with only a minimal amount of coding.

You can use HostAccess¡s Windows AiF to create and use:

Â Push buttons.

Â Radio buttons.

Â Check boxes

Â Edit boxes.

Â List boxes.

Â Combo boxes.

Â Secondary windows.

Â String lists.

Â Commands.

Â Menus.

You can use these in a fully interactive fashion, reacting to user input. For example, you can detect
whenever the user clicks on a pushbutton, and react accordingly.

C H A P T E R 2 A I F T O O L K I T

10 Developer’s Guide

Escape Sequence Summary

Sculpture, see from page 15.

ESC_1 Turns sculpture mode on or off.

ESC_2 Draws a sculpted box.

ESC_3 Draws a sculpted horizontal line.

ESC_4 Draws a sculpted vertical line.

ESC_5 Changing default colours.

Controls, see from page 20.

ESC_9 Verifies a named control is valid.

ESC_10 Destroys a named control.

ESC_11 Enables/disables a named control.

ESC_12 Shows/hides named control(s).

ESC_13 Re-sizes and/or moves a control's window.

ESC_14 Changes a control¡s colours.

ESC_15 Sets/clears event reporting for named controls.

ESC_16 Sets input focus to a named control.

ESC_17 Sets input focus to an unknown control.

ESC_18 Uses groups of controls.

ESC_19 Returns a given string when an event occurs.

ESC_20 Sets control¡s accelerator character.

ESC_21 Sets the meaning of the <Return> key.

Copy and paste, see from page 27.

ESC_22 Copies an area of the screen.

ESC_23 Pastes a saved area of screen.

ESC_24 Clears all slots of saved screen regions.

Root control, see from page 30.

ESC_25 Creates the root control.

ESC_26 Reads a value from the root control.

ESC_27 Manipulate the root control.

ESC_28 Miscellaneous control functions.

Secondary Windows, see from page 32.

ESC_29 Secondary Windows manipulation.

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 11

Pushbuttons, check boxes and buttons, see from page 37.

ESC_30 Creates a text pushbutton with a text label.

ESC_31 Creates an image pushbutton.

ESC_32 Display an image.

ESC_33 Commands for toolboxes, toolbars, commands and menus.

ESC_34 Creates a check box.

ESC_35 Creates a radio button.

ESC_36 Reads a value from a button.

ESC_37 Manipulates a button.

Lists, comboboxes and edit boxes, see from page 55

ESC_40 Creates/adds entries to/removes entries from string lists.

ESC_41 Read a value from a string list.

ESC_42 Manipulates a string list.

ESC_45 Creates a list box or combo box.

ESC_46 Reads a value from a list box or combo box.

ESC_47 Manipulates a list box or combo box.

ESC_50 Creates an edit box.

ESC_51 Reads a value from an edit box.

ESC_52 Manipulates an edit box.

ESC_53 Creates a static label.

ESC_70 Attach a validation to an edit box.

Miscellaneous

ESC_56 Changes the Windows pointer

ESC_91 Creates a modal message box.

ESC_92 Sets status bar text.

ESC_93 Changes text font.

ESC_94 Status bar and Windows help functions.

ESC_95 Returns notification after a set time.

C H A P T E R 2 A I F T O O L K I T

12 Developer’s Guide

Using escape sequences

To use AiF, you send AiF escape sequences from the host to the PC. An escape sequence enables
you to send encoded signals to the host.

Any host process that can send output to a terminal can also use AiF by sending special escape
sequences to HostAccess running on a PC. HostAccess intercepts these escape sequences and takes
the appropriate action (for example, saving a screen image).

Software developers normally define these AiF escape sequences so that they can be referenced
globally as variables by their applications code (either at run-time or compile time).

AiF escape sequences are standard ANSI X3.64 compliant escape sequences, belonging to the ANSI
APC (Application Program Command) class of sequences.

To use AiF properly, you should be familiar with the concept of controls. Controls are Windows

objects that are held in HostAccess¡s memory which have associated names (control ids).

Many Windows AiF escape sequences have control-id string parameters. Unless otherwise stated,
you can assume that these parameters refer to the relevant control id as described here. A control-id
is a unique identifier. You must define a control sequence before it can be used in an escape
sequence.

Controls can be defined in a list and then sent to HostAccess from the host as a group.

Format of Escape Sequences

HostAccess expects AiF escape sequences to conform to a certain format. Every AiF escape
sequence starts with the ESCape character (ASCII decimal value 27). Sequences take the following
format:

ESC_nn ; Int1 ; Int2 ; ... Intn w String1 ; String2 ; ... Stringn ESC\

Where:

ESC Is the escape character.

_ Is an underscore character. This can be modified if required.

nn Is the number of the particular Windows AiF escape sequence you want to use.

Int1 ... Intn Are integer parameters in the AiF escape sequence. These parameters depend on
the AiF escape sequence and are always preceded by a delimiter. If the sequence
has no integer parameters, there are no delimiters before the w character.

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 13

; Is the default delimiter character, although it can be changed.

w Is a literal ¡w¡ character (signifying Windows). This must be lower-case.

String1 ...
Stringn

Are string parameters in the AiF escape sequence. These strings depend on the
AiF escape sequence and are separated by delimiters. Often, the first string will
be the id of a control or object.

ESC\ Is the escape character, followed by \ (a backslash character).

Delimiters are optional if their parameters are omitted. However, they are mandatory if used to
indicate the order of a parameter.

For example, an AiF escape sequence has 3 optional parameters x, y, and z. You want to omit x and
y from your sequence, using the default values. However, you also want to use the z parameter.
Therefore, you must have 3 delimiters preceding the z parameter, to indicate its position.

Note: one of the most common programming errors when using AiF escape sequences is to forget
or misplace the required delimiters

Conventions used

The following conventions are used when coding escape sequences:

Â String and integer parameters may be optional depending on the escape sequence. Optional
parameters are shown enclosed in braces - for example, {; enable}.

Â Optional delimiters are also enclosed in braces.

Â Default values for optional parameters are shown with asterisks. For example: 2* = do not
enable means that the relevant parameter takes the value 2 as a default.

Â Control ids are case insensitive. For example, OK.BUTTON is the same as ok.button.

Â Do not use spaces when coding the escape sequences. Spaces are shown in the escape
sequence descriptions for clarity only.

Â All AiF escape sequence parameters are given labels for clarity.

Â The following applies when returning values to the host:

STX Decimal value 02.

CR Decimal value 13 (Carriage Return).

C H A P T E R 2 A I F T O O L K I T

14 Developer’s Guide

AiF Example

The following is a Windows AiF escape sequence:

ESC_1 {; enable} {; clear} w ESC\

This escape sequence has escape sequence number 1, takes two optional integer parameters, enable
and clear and has no string parameters. It turns sculpture mode on/off, see page 16 for further
information.

Screen Layout

For clarity, the positioning and drawing of the screen is performed in a grid method. The top left
hand corner of any window has the grid co-ordinates of 1,1, and the bottom right can be 24, 80.
Each character displayed upon the window takes up one cell, or grid row and column position.

Co-ordinates are given as y, x, where y is the number of vertical characters down the screen, and x
is the number of characters across the screen.

Note: the top-left corner is position 1,1 - not position 0,0.

Many of the AiF escape sequences described in the following sections have y and x co-ordinates as
parameters. Unless otherwise stated, you can assume that these parameters use the standard y, x
system as described here.

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 15

Sculpting the Screen

You can use the following group of escape sequences to exploit the sculpture facilities of
Windows:

Â Turning sculpture mode on/off.

Â Drawing sculpted boxes.

Â Drawing sculpted lines.

Â Changing default colours.

This allows you to create raised or sunken images on your screen, with the 3-D effect of a stone
sculpture. A sculpted image is produced by shading sides of a picture, so when drawing a sculpted
box , the top and left sides of the box are shaded one colour, and the bottom and right sides of the
box are shaded another colour.

For example, to produce an image of a sunken box, you would need to shade the top/left sides a
dark colour, and the bottom/right sides a light colour.

Because of the way HostAccess sculpting works, you can have a full sculpted screen without losing
any of your 24 by 80 display. Sculpting works independently of your normal screen, so clearing the
screen does not clear sculpture.

See page 19 for an example of using a macro to sculpt a screen.

Colours

Colours for sculpted boxes and lines are chosen from HostAccess¡s colour palette. This palette
consists of colours 1 - 16 as follows:

Number Colour Number Colour

1 black 9 dark grey

2 blue 10 light blue

3 green 11 light green

4 cyan 12 light cyan

5 red 13 light red

6 magenta 14 light magenta

7 brown 15 light brown

8 grey 16 white

C H A P T E R 2 A I F T O O L K I T

16 Developer’s Guide

When choosing colour, you can also choose the clear colour (number 17). This represents the
colour of the current background, and has the effect of clearing the relevant lines and/or boxes.

Turning Sculpture Mode on/off

To turn sculpture mode on/off, use the following AiF escape sequence:

ESC_1 {; enable} {; clear} w ESC\

Where:

enable 1 = disable sculpture mode.
2* = enable sculpture mode.

clear 0* = do not clear existing lines/boxes.
1 = clear existing sculpted lines and boxes.

Turning sculpture mode on or off does not affect the drawing of any sculpted boxes or lines. To
draw a complete sculpted screen very quickly, draw your screen, then set sculpture mode to on.

You can also use this escape sequence to just clear sculpted lines and boxes, without switching
mode. Clearing lines and boxes sets their border colour to clear.

Drawing Sculpted Boxes

To draw a sculpted box, use the following AiF escape sequence:

ESC_2 ; y ; x ; h ; wid {; col1} {; col2 ; col3} w ESC\

Where:

y y co-ordinate of top of box.

x x co-ordinate of left of box.

h Height of box, in characters (rows).

wid Width of box, in characters.

col1 Colour selection:
1* = use default sculpture colours.
2 = use default colours, reversed (for raised instead of sunken appearance).
3 = use col2 and col3 parameters (below) to define colours.
4 = set to clear - clear the box from the screen.

col2 Palette colour of top and left sides of box. 1-17, ignored unless col1 = 3. See page 15 for a
description of the colours.

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 17

col3 Colour of bottom and right sides of box. 1-17, ignored unless col1 = 3.

Example

To draw a box at (10, 2), height 5, width 10, and colours 1 (top/left) and 16 (bottom/right), use:

ESC_2 ; 10 ; 2 ; 5 ; 10 ; 3 ; 1 ; 16 w ESC \

Drawing Sculpted Lines

To draw a sculpted horizontal line, use the following AiF escape sequence:

ESC_3 ; y ; x ; len {; col} w ESC\

Where:

y y co-ordinate of line origin.

x x co-ordinate of line origin.

len Length of line, in characters.

col Colour for line:
0* - default top/left colour.
1..17 - colour number

See Drawing sculptured boxes on page 16 to find out how to change the default and
Colours on page 15 for a description of the colours.

To draw a sculpted vertical line, use the following AiF escape sequence:

ESC_4 ; y ; x ; len {; col } w ESC\

Where y, x, len and col are as described above.

Examples

To draw a sculpted horizontal line at (12, 14), 10 characters (columns) long, with colour 1, use the
following AiF escape sequence:

ESC_3 ; 12 ; 14 ; 10 ; 1 w ESC \

To draw a sculpted vertical line at (10, 31), 5 characters (rows) long, with colour 16, use the
following AiF escape sequence:

ESC_4 ; 10 ; 31 ; 5 ; 16 w ESC \

C H A P T E R 2 A I F T O O L K I T

18 Developer’s Guide

Changing Default Colours

To change default sculpture colours, use the following AiF escape sequence:

ESC_5 ; top-left ; bot-right w ESC\

Where:

top-left Default top side and left side colour. 1..17: colour number. See Colours on
page 15 for a description of the colours.

bot-right Default bottom side and right side colour. 1..17, as described above.

These colours will be used as defaults for all subsequent sculpted box and line drawing.

Example: Sculpted Drawing

The following diagram shows how you can use the sculpture features of the Windows AiF to
produce lines and boxes. The example turns sculpture mode on, and draws three sculpted boxes,
then a sculpted horizontal line (in a box), and a sculpted vertical line (in a box).

ESC_1 w ESC\

ESC_2 ; 10 ; 2 ; 5 ; 10 ; 3 ; 1 ; 16 w ESC\

ESC_2 ; 10 ; 14 ; 5 ; 10 ; 3 ; 1 ; 16 w ESC\

ESC_2 ; 10 ; 26 ; 5 ; 10 ; 3 ; 1 ; 16 w ESC\

ESC_3 ; 12 ; 14 ; 10 ; 1 w ESC\

ESC_4 ; 10 ; 31 ; 5 ; 16 w ESC\

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 19

Example of sculpting the screen using a macro

REM

REM Macro to demonstrate sculpted line drawing

REM using boxes that touch and those that do not.

REM Also using vertical and Horizontal lines to split boxes.

REM

REM For best results, select the NORMAL Attribute Colour

REM of Black foreground on Lightgrey background.

REM

REM Turn Sculpture mode ON. print chr$(27) ; ñ_1wò ; chr$(27) ; ñ\ ò;

REM Draw 3 Boxes .

print chr$(27) ; ñ_2;10;2;5;10;3;1;16wò ; chr$(27) ; ñ\ ò; print

chr$(27) ; ñ_2;10;14;5;10;3;1;16wò ; chr$(27) ; ñ\ ò; print chr$(27) ;

ñ_2;10;26;5;10;3;1;16wò ; chr$(27) ; ñ\ ò;

REM Draw 2 Lines , Horizontal & Vertical

print chr$(27) ; ñ_3;12;14;10;1wò ; chr$(27) ; ñ\ ò; print chr$(27) ;

ñ_4;10;31;5;16wò ; chr$(27) ; ñ\ ò;

REM Draw 4 Boxes directly underneath each other.

print chr$(27) ; ñ_2;10;40;1;30;3;1;16wò ; chr$(27) ; ñ\ ò; print

chr$(27) ; ñ_2;11;40;1;30;3;1;16wò ; chr$(27) ; ñ\ ò; print chr$(27) ;

ñ_2;12;40;1;30;3;1;16wò ; chr$(27) ; ñ\ ò; print chr$(27) ;

ñ_2;13;40;1;30;3;1;16wò ; chr$(27) ; ñ\ ò; print chr$(27) ;

ñ_2;14;40;1;30;3;1;16wò ; chr$(27) ; ñ\ ò;

REM NOTES : Please note that each line has the ; at the end.

REM This will suppress the CRLF and stop the screen from REM

scrolling.

C H A P T E R 2 A I F T O O L K I T

20 Developer’s Guide

Managing Controls

These sections deal with general manipulation of specific controls, which have names given by
control-id parameters.

You can create control groups, containing several controls. These control groups are created with
specific names - control group ids.

Verify a Control

To verify that a named control has been created (i.e. verify the control-id is in use), use the
following AiF escape sequence:

ESC_9 w control-id ESC\

Where:

control-id Control id or group id.

This returns:

<STX> status < CR>

Where:

status 0 = Control-id/group-id not in use.

1 = Control-id/group-id is in use.

Enabling/Disabling a Control

To enable or disable a named control (or control group), use the following AiF escape sequence:

ESC_11 {; enable} w control-id ESC\

Where:

enable 1 = disable control.
2* = enable control.

control-id Control id or group id.

Enabled controls will accept user input, disabled controls will not.

If you disable a control that currently has focus, or would have if the application were the active top
level Window, then focus is shifted to the root.

Note: disabled controls are not greyed out - they simply will not accept any user input.

Showing/Hiding a Control

To show or hide a named control (group) on the screen, use the following AiF escape sequence:

ESC_12 {; show} w control-id ESC\

Where:

show 1 = hide control.

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 21

2* = show control.

control-id Control id or group id.

If you hide a control that currently has focus, or would have if the application were the active top
level Window, then focus is shifted to the root.

Destroying a Control

To destroy a named control, string list or control group, use the following AiF escape sequence:

ESC_10 {; delete} w control-id ESC\

Where:

delete Use only if the id is that of a control group:
1 = do not delete controls inside group
2* = delete all controls in group.

control-id Control id, string list id or control group id.

Destroying a control will flush it from HostAccess¡s memory. The control is immediately removed
from the screen.

If the specified control currently has focus, or would have focus if the application were the active
top level Window, then focus is shifted to the root.

Deleting a control group will by default delete all the controls in that group. To retain the controls,
set the delete parameter to 1.

Re-sizing/Moving a Control’s Window

To re-size and/or move a control¡s window, use the following AiF escape sequence:

ESC_13 ; y ; x ; h ; wid w control-id ESC\

Where:

y New y co-ordinate of top of control.

x New x co-ordinate of left of control.

h New height of control, in characters.

wid New width of control, in characters.

control-id Control id.

If y and x are set to (0,0), then the window is not moved.

C H A P T E R 2 A I F T O O L K I T

22 Developer’s Guide

Changing Control Colours

To change the foreground, background and grayed colours for a control, use the following AiF
escape sequence:

ESC_14 {; fore} {; back} {; grayed} w control-id ESC\

Where:

fore Foreground colour, in range 1..16. (*=16).

back Background colour, in range 1..16. (*=1).

grayed Grayed colour, in range 1-16. (*=1).

Used by some controls when disabled.

control-id Control id.

How the colours are used depends on the control type and contents. Text labels for buttons are
always shown in the foreground colour (unless the control is disabled).

Reporting Events

When an event is reported to the host, information about that event is sent in the following format:

<STX> WC<CR> id , event{, Argument} <CR>

Where:

WC Literal characters.

id Control id of control associated with the event or ? if no event available.

event Event number - see Event Numbers Defined below.

Argument Optional argument associated with event.

Event Numbers Defined

Currently defined event numbers are:

1 ENTER pressed.

2 ESCape pressed.

3 Button clicked.

4 Check box or radio button check state change.

 Argument: 1 = button is now unchecked, 2 = button now checked.

5 Contents of edit box, or the contents of the edit box part of simple and dropdown combo
boxes, have been changed by user.

 Argument: edit box contents, escape sequence number 1, see Reading from an edit box on
page 64, for the format.

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 23

6 List box selection change.

 Argument: host string of newly selected item, or “?” if nothing selected.

7 List box double click.

 Argument: host string of double clicked item.

8 FOCUS: sent whenever the user changes focus from one control to another.

 Returns 4 parameters: old control (string label), event (1=ENTER, 3=CLICKED,
9=TABBED), New control (string label) and Amend flag (set to 2 if old control had changed
since it gained focus, otherwise 1).

9 TAB: control has been tabbed from.

10 CLICKEDON: left mouse down event over control when a different control, or the root, had
the focus, resulting in focus moving to the clicked on control.

 Argument: id of control that has just lost the focus.

11 Secondary Window activate: the user is changing focus from a secondary window.

12 Secondary Window close: the user is trying to close a secondary window.

13 LISTBOX: tells host when a user scrolls off the end of a partially displayed string list.

Enabling Event Reporting

You can set or clear specific event reporting for named controls or control groups. For example,
you could disable reporting for return keys pressed by the user.

To set/clear event reporting for controls/groups, use the following AiF escape sequence:

ESC_15 {; enable} ; event1 {checksum} w control-id ... ESC\

Where:

enable 1 = disable events (discards outstanding stacked events).
2* = enable events.
3 = stack events.

event1 ... Event number - see from page 22.

checksum 1* No checksumming

2 Use length checksum.

control-id Is the control id or control group id.

Note: Destroying a control will flush outstanding events.

Examples

To disable button click reporting for button with id ¡but1¡, use the following AiF escape sequence:

ESC_15 ; 1 ; 4 w but1 ESC\

To enable enter key and button click reporting for button with id ¡helpbut¡, use

C H A P T E R 2 A I F T O O L K I T

24 Developer’s Guide

ESC_15 ; 2 ; 1 ; 3 w helpbut ESC\

Requesting events for use with stacked events.

When you enable an event you can specify that the events are stacked. This means the events are
not reported until your program is ready to receive the event. Then you can send an escape
sequence to get the next event from the stack.

To request an event from the stacked event handling system, use the following AiF escape
sequence:

ESC_6 ; mode w {control_id} ESC \

Where:

mode 1= Get next stacked event. Wait if no event is available.

 2= Get next stacked event. Return if no event is available.

 3= Get last reported stacked event.

 4= Flush event stack.

control_id If mode is 1 or 2, control_id is optional and takes events only from that named
control. Control_id is not relevant for modes 3 and 4.

Getting events

ESC_6 ; {wait_code} w { control-id } ESC \

Where:

wait_code 1 = get next event. Don't respond until an event is generated.

 2 = get next event, or return immediately.

 3 = get last event.

 4 = flush all events.

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 25

control-id1 ... Is the control id or control group id.

If control_id is specified, then the command applies only to that control. If it is not specified, then
it applies to all controls.

This returns:

<STX> WC <CR> cont rol event {argument} <CR>

Where:

control Control id or '?' if no event available.

event Event number.

argument Optional argument for event.

Setting Input Focus to a Named Control

To set the input focus to a named control, use the following AiF escape sequence:

ESC_16 w control-id ESC\

Where:

control-id Is the control id.

If the id given does not match a known control, or it is the string “root”, focus is returned to the
background terminal characters.

Setting Input Focus to an Unknown Control

To set input focus to the next/previous control in the tabbing order, use the following AiF escape
sequence:

ESC_17 ; direction w ESC\

Where:

direction 1 = set the input focus to the previous control.

2* = set the input focus to the next enabled and visible control.

If there are no such controls, focus will be left with the root.

C H A P T E R 2 A I F T O O L K I T

26 Developer’s Guide

Using Control Groups

You can create control groups, holding several different controls, for ease of use. Once you have
created groups of controls, you can use any of the generic control management facilities
documented in this section on entire control groups (for example, showing/hiding controls).

To add or remove controls to/from a control group, use the following AiF escape sequence:

ESC_18 ; add w group-id ; control-id1 ... ESC\

Where:

add 1 = remove one or more controls from a control group
2* = add one or more controls to a control group.

group-id Control group id.

control-id1 Individual control id(s).
You have to define (create) each control id separately before using it with a
control group.

Creating a Control Group

To create a new control group, add one or more controls to a group with the required id and the
group will be automatically created.

Example

To create a control group named buttons, holding the controls radio1, radio2 and check1, use the
following AiF escape sequence:

ESC_18 ; 2 w buttons ; radio1 ; radio2 ; check1 ESC\

To delete the control radio2 from that control group, use the following AiF escape sequence:

ESC_18 ; 1 w buttons ; radio2 ESC\

Returning an Alternate Message

To tell a control to return a different string to the host when the given event occurs for which
reporting is enabled, use the following AiF escape sequence:

ESC_19 ; event ; class w control-id ; message ESC\

Where:

event Event number, see page 22 for details.

class 1* = Send message back as a string (default behaviour).

2 = Treat message as the name of a macro file to execute.

3 = Send message back as a string and pass focus back to
Terminal Window

control-id Control id.

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 27

message Alternate message.

When an alternate message is set, it will be sent to the host unmodified. It will not have a CR sent
after it.

For example, to cause a single character, ¡X¡, to be sent to the host when the ¡ed¡ control has been
tabbed to (tab = event number 9), use:

ESC_19 ; 9 w ed ; X ESC\

Setting the Accelerator Character

To set the accelerator character for a named control, use the following AiF escape sequence:

ESC_20 w control-id ; accel ESC\

where accel is the accelerator character.

This allows the control to receive the focus when the user presses Alt plus the given key, but only
when the control is capable of accepting the focus, and keystrokes are being processed by controls
(if the root has the focus, they may not be). This does not change the visual appearance of the
control at all. It is usual to indicate to the user what the accelerator key is by underlining it in the
label nearest the control.

In the case of button controls (push, check and radio), there is no need to issue this escape, since
the accelerator key will be set automatically by searching the label for the first and prefixed
character.

Example

To allow Alt/E to be the accelerator key for control with id ¡edit¡, use:

ESC_20 w edit ; E ESC\

Setting the Return Key Meaning

Normally, pressing a Return key reports a RETURN event to the host. To set the event returned
(for a named control), use the following AiF escape sequence:

ESC_21 ; meaning w control-id ESC\

Where:

meaning 1 = set RETURN event returned to be a TAB.
2 = set RETURN event returned to be a RETURN (i.e. default return
behaviour).

control-id Control id.

Copy and Paste

The following AiF sequences enable you to copy a region of screen, including sculpting, and paste it
into another specified region.

C H A P T E R 2 A I F T O O L K I T

28 Developer’s Guide

Copying an area of the screen

The following sequence copies a rectangular region of the screen, complete with sculpting, into a
specified slot.

ESC_22 ; slot ; x ; y ; right ; bottom ; option w ESC \

Where:

slot Slot number. The minimum is 0, the maximum is 255. If the slot is
already in use, it is overwritten with the new region. If the option
specified is 1, then the region is also cleared of text and sculpting.

x x co-ordinate of rectangle.

y y co-ordinate of rectangle.

right x right co-ordinate of rectangle.

bottom y bottom co-ordinate of rectangle.

option Choose one of the following options:

 0 = Leave rectangle.

 1 = Clear rectangle and save.

 2 = Clear rectangle only.

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 29

Pasting a copied region of screen

 The following sequence pastes a region of the screen copied into a slot using ESC_22 to either the
position from which the region was saved, or at new co-ordinates if specified.

ESC_23 ; slot ; x ; y w ; esc \

Where:

slot Slot number to restore. If an unused slot is specified, a journal message will be
generated and the action ignored.

x x co-ordinate where the saved region of screen will be pasted to. If x and y are
left blank, the region will be pasted to the position from which the region was
copied.

y y co-ordinate where the saved region of screen will be pasted to. If x and y are
left blank, the region will be pasted to the position from which the region was
copied.

Note: the region specified by x and y must be visible on the screen, offscreen regions will be
ignored.

Clearing slots of copied screen regions

The following sequence clears all slots of screen regions copied using ESC_22.

ESC_24 w ESC\

C H A P T E R 2 A I F T O O L K I T

30 Developer’s Guide

Root Control Features

This section describes some escape sequences that may be used to manage the ¡root¡ control. This is
not really a control at all, but an interface to manipulate behavioural aspects of the underlying
terminal character display area in so far as they relate to embedded controls.

To use these functions, you must first create the one and only ¡root control¡. Once created,
subsequent attempts to create it are ignored.

Once created, you can use some of the standard control management escapes on it (such as the

event management escape, if you¡re interested in, say, when the root is tabbed to).

Creating the Root Control

To create the one and only ¡root¡ control, use the following AiF escape sequence:

ESC_25 w ESC\

It has the fixed id string ¡root¡.

Reading From the Root Control

To read a value from the ¡root¡ control, use the following AiF escape sequence:

ESC_26 ; 1 w ESC\

A value will be returned to the host. The value returned is the ¡tab in permitted¡ state of the root,
sent in the following format:

<STX>value<CR>

Where:

Value 1 = tab-in is permitted.
2 = tab-in is not permitted.
? = error detected.

Manipulating the Root Control

To disable or enable ¡tab-in¡ to the root, use the following AiF escape sequence:

ESC_27 ; 1 ; {tabin} w ESC\

Where:

tabin 1 = disable ¡tab-in¡ to the root.

2* = enable ¡tab-in¡.

Naming a Base Control Group

To name a control group to which all subsequently created controls will be automatically added, use
the following AiF escape sequence:

ESC_28 ; 1 w group ESC\

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 31

Where:

group The name of the control group. If this control group does not exist, it will be created.

Setting Default Foreground/Background Colours

To set the default foreground and background colours for use when subsequent controls are
created, use the following AiF escape sequence:

ESC_28 ; 2 {; fore} {; back} {; grayed} w ESC\

Where:

fore Foreground colour, in range 1-16. *=16.

back Background colour, in range 1-16. *=1.

grayed Grayed colour, in range 1-16. *=5, for subsequently created controls.

Forcing Palette Reconstruction

To force palette reconstruction (back to the original default setup), use the following AiF escape
sequence:

ESC_28 ; 3 w ESC\

This is useful in some situations after removing/adding 256 colour bitmaps. All controls showing
bitmaps will be redrawn when this happens.

C H A P T E R 2 A I F T O O L K I T

32 Developer’s Guide

Secondary Windows

You create secondary windows inside your main terminal window. If the secondary window has
been correctly defined and is activated, the user can perform normal Windows manipulation
functions, such as:

Â Entering data.

Â Minimising/maximising the window.

Â Re sizing and re-positioning the window.

This section describes how to create, destroy, activate, hide and show secondary windows.

Scaling

You can scale secondary windows, by defining the number of columns and rows in the window,

then defining the window¡s actual size. By default, the scaling is 1, and the secondary window is
created just large enough to hold the terminal window inside it.

This shows a secondary window, with top left corner at (3,3), holding a terminal window of width
40, height 10, and title “Hello”.

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 33

Creating a Secondary Window

To create a secondary window, use the following AiF escape sequence:

ESC_29 ; 1 ; top ; left ; h1 ; wid1 {; wid2} {; h2} {; fg} {; bg} {; mod} {; bord} {; bar} {; min} {; max} {;
orig} {; size} {; page} w id ; title ESC\

Where:

Top Window top. Cell offset.

Note:

When orig = 1, this is the pixel row of the top/left of the window, i.e. one more than the
number of pixels visible above the top of the sub window frame.

When orig = 2, this is one more than the number of pixels of the application window,
including the window frame, visible above the top/left of the window frame.

When orig = 3, this is the row/column number measured in character cells within the
base window of the top row/ first column of characters in the subwindow. The window
border is drawn above this position.

Left Window left. Cell offset. See note in top.

h1 Number of columns in terminal window. If h1 and wid1 is smaller than h2 and wid2, the
font will be scaled down so the correct number of cells will still appear in the subwindow.

wid1 Number of rows in terminal window. If h1 and wid1 is smaller than h2 and wid2, the
font will be scaled down so the correct number of cells will still appear in the subwindow.

wid2 Window width - use to scale the window horizontally.

When size = 2 and wid2 is smaller than wid1, the subwindow is initially drawn with a
width of wid2 character cells (measured by the cell size of the base window). If size = 1
or wid2 is greater than wid1, wid2 and h2 will have no effect.

h2 Window height - use to scale the window vertically.

Fg Foreground colour of terminal window 1..16, *=16

bg Background colour of terminal window 1..16, *=1

mod Modality: 1 = modeless, 2* = modal.

bord Border type: 1 = none; 2* = thin, not resizeable, 3 = thick, resizeable.

bar Title bar type: 1 = none; 2* = normal.
If you have a title bar, a default thin border is used by default, although you can have a
thick border using bord.

C H A P T E R 2 A I F T O O L K I T

34 Developer’s Guide

min 1*= do not show a minimise box.
2 = show a minimise box.
3 = do not show a minimise box but show close.
4 = show minimise and close.

max 1*= do not show a maximise box.
2 = show a maximise box.
3 = do not show maximise box and create the window hidden.
4 = Show maximise box and create the window hidden.

The window will become modeless if windows are created hidden

orig Window position:
1 = relative to the screen, in pixels.
2 = relative to the application window, in pixels.
3* = relative to the main terminal window, in character cells.

size Interpretation of secondary window size:
1 = pixel size of whole window, including non-client parts.
2* = size in cells of the displayed terminal window, to which the non-client parts are
added.

page

Specify the number of backpages where:

0* =an active page and the number of backpages which have been specified in Configure,
Edit from the HostAccess menu.
1= an active page and no backpages.
2 =an active page and 1 backpage.
3 = an active page and 2 back pages and so on.

Id Control id of the secondary window.

title Title.

Example of how to create a secondary window.

To create a secondary window at (3,3), holding a terminal window of size 40x10, use the following
AiF escape sequence:

ESC_29 ; 1 ; 3 ; 3 ; 10 ; 40 w Help ; Hello ESC\

The Windows window will be made exactly the right size to hold the terminal window inside it.

The control id is ¡Help ¡; the title will be ¡Hello ¡

This will produce the following display on your terminal window:

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 35

Destroying a Secondary Window

To destroy secondary windows, use the following AiF escape sequence:

ESC_29 ; 2 w id ESC\

Where id is the window id.

Activating a Secondary Window

To activate secondary windows, use the following AiF escape sequence. This will bring the active
window to the front.

ESC_29 ; 3 w id ESC\

Where id is the window id.

C H A P T E R 2 A I F T O O L K I T

36 Developer’s Guide

Setting Focus for Output in a Secondary Window

To set the focus for host output to a secondary window, use the following AiF escape sequence.
This sequence is useful for controlling host output to different windows as the user may change the
focus of the secondary window manually by clicking on the active window.

ESC_29 ; 3 ; 1 w id ESC \

Hiding/Showing a Secondary Window

To hide or show a secondary window, use the following AiF escape sequence:

ESC_33 ; 2 ; show w id ESC\

Where:

show 1 = Hidden.
2 = Minimised.
3* = Normal.
4 = Maximised.

id Toolbox/window id.

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 37

Buttons

The following sections describe how to use AiF escape sequences to create and use:

Â Text push button.

Â Image push button.

Â Images (treated as static buttons).

Â Radio buttons.

Â Check boxes.

When using these escape sequences, you can describe button images for a button in great detail.

Creating a Text Button

To create a pushbutton holding a text label, use the following AiF escape sequence:

ESC_30 ; y ; x ; h ; wid {; visible} {; enabled} {; font} w control-id ; label ESC\

Where:

y y co-ordinate of top of button.

x x co-ordinate of left of button.

h Height of control, in character cell units.

wid Width of control, in character cell units.

visible 1 = create hidden.
2* = create visible.

enabled 1 = initially disabled.
2* = initially enabled.

font Selects button label font:

1* =Terminal.
2 = System.
3 = 10pt Helvetica.
4 = 8pt Helvetica.

Styles 3 and 4 map on to the Helvetica fonts used in Borland-style bitmap
pushbuttons and in dialog static text used by the application.

control-id Control id – must be unique, and may not be “root”.

label Button label.

Creating An Image Button

To create a push button holding a bitmap image and (optionally) a text label, use the following AiF
escape sequence:

ESC_31 ; y ; x ; h ; wid {; visible} {; enabled} {; font} w control-id ; spec ESC\

C H A P T E R 2 A I F T O O L K I T

38 Developer’s Guide

Where:

y y co-ordinate of top of button.

x x co-ordinate of left of button.

h Height of button, in rows.

wid Width of button, in columns.

visible 1 = create hidden, 2 = create visible(*).

enabled 1 = initially disabled, 2 = initially enabled(*).

font Selects button label font:

1* = Terminal.
2 = System.
3 = 10pt Helvetica.
4 = 8pt Helvetica.

Styles 3 and 4 map on to the Helvetica fonts used in Borland-style bitmap
pushbuttons and in dialog static text used by the application.

control-id Control id.

spec See Appendix A, Describing Images for details.

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 39

Image Specification for Pushbuttons

This powerful feature allows you to create pushbuttons holding:

Â Bitmap images (.BMP files).

Â Icon images (.ICO files).

Â Bitmaps or icons in resource files (.DLL or .EXE files).

Example

To create a pushbutton called help, displayed at (10,10), with height 5 and width 10, using the
bitmap image held in the file c:\ pictures\ question.bmp, use the following AiF escape sequence:

ESC_31 ; 10 ; 10 ; 5 ; 10 w help ; file=c:\pictures\question.bmp ESC\

See Appendix A, Describing Images for details.

Displaying an Image

To display an image on the screen, you can create a disabled push button, with an image defined
using an image specification string. This allows a simple way of displaying icons or bitmap images.

To display an image, use the following AiF escape sequence:

ESC_32 ; y ; x ; h ; wid {; visible} w control-id ; spec ESC\

Where:

y y co-ordinate of top of button.

x x co-ordinate of left of button.

h Height of control, in character cell units.

wid Width of control, in character cell units.

visible 1 = create hidden.
2* = create visible.

control-id Control id.

spec See Appendix A, Describing Images for details.

Note: the label font is set to the terminal font. This does not usually matter since disabled buttons
normally just hold an image.

C H A P T E R 2 A I F T O O L K I T

40 Developer’s Guide

Example

To display an image called asterisk, displayed at (10,10), with height 5 and width 10, using the
bitmap image held in the file star.bmp, use the following AiF escape sequence:

ESC_32 ; 10 ; 10 ; 5 ; 10 w asterisk ; file=star ESC\

Creating a Check box

To create a check box, use the following AiF escape sequence:

ESC_34 ; y ; x ; h ; wid {; visible} {; enabled} {; font} {; left} {; check} w control-id ; label ESC\

Where:

y y co-ordinate of top of check box.

x x co-ordinate of left of check box.

h Height of check box, in rows.

wid Width of check box, in columns.

visible 1 = create hidden.
2* = create visible.

enabled 1 = initially disabled.
2* = initially enabled.

font Selects font:

1* = Terminal.
2 = System.
3 = 10pt Helvetica.
4 = 8pt Helvetica.

left 1 = text on left.
2* = text on right.

check 1* = initially unchecked.
2 = initially checked.

control-id Control id - must be unique, and may not be “root”.

label Text label.

The event reporting mask is initially set to all bits clear.

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 41

Creating a Radio Button

To create a radio button, use the following AiF escape sequence:

ESC_35 ; y ; x ; h ; wid {; vis} {; en} {; font} {; left} {; check} w r-id {; label} {; g-id} ESC\

Where:

y y co-ordinate of top of radio button.

x x co-ordinate of left of radio button.

h Height of radio button, in rows.

wid Width of radio button, in columns.

vis 1 = create hidden.
2* = create visible.

en 1 = initially disabled.
2* = initially enabled.

font Selects font:

1* = Terminal.
2 = System.
3 = 10pt Helvetica.
4 = 8pt Helvetica.

left 1 = text on left, 2* = text on right.

check 1* = initially unchecked, 2 = initially checked.

r-id Radio button control id - must be unique, and may not be “root”.

label Text label for button - optional.

g-id Control group id, if relevant - optional.

The event reporting mask is initially set to all bits clear.

Using Radio Buttons in Groups

If you give a control group id, the button control is automatically added to that group. The group is
created if it does not exist.

When the first radio button control is added to a radio button group, it is forced to be checked,
even if the host has not asked for it. When subsequent radio buttons are added to a radio button
group, if an initially checked button is added, the check is removed from the previously checked
button in the group.

These rules ensure that exactly one radio button in a group will be initially checked. It also means
that when creating the controls, if they are created as visible, and the initially checked button is not
going to be the first, the user will momentarily see the check on the first button. To avoid this,
create radio buttons initially hidden, and then show them all at once.

C H A P T E R 2 A I F T O O L K I T

42 Developer’s Guide

Example: Using Buttons

This example displays the following on your terminal window:

Â A 3x8 push button called text, at (12,1), labelled "Label".

Â A 3x8 image button called help, at (12,10), using the image held in the file
c:\ bitmaps\ f1help.bmp.

Â A 8x16 image called logo, at (1,10), using the image c:\ bitmaps\ easyacc.bmp.

Â Three check boxes: check1, check2 and check3.

Â Two radio button: radio1 and radio2.

using the following AiF escape sequences:

ESC_30 ; 12 ; 1 ; 3 ; 8 w text ; Label ESC\

ESC_31 ; 12 ; 10 ; 3 ; 8 w help ; file=c:\bitmaps\f1help.bmp ESC\

ESC_32 ; 1 ; 10 ; 8 ; 16 w logo ; file=c:\bitmaps\easy-acc.bmp ESC\

ESC_34 ; 10 ; 20 ; 2 ; 10 ;;;;; 2 w check1 ; Check 1 ESC\

ESC_34 ; 12 ; 20 ; 2 ; 10 ;;;;; 2 w check2 ; Check 2 ESC\

ESC_34 ; 14 ; 20 ; 2 ; 10 w check3 ; Check 3 ESC\

ESC_35 ; 10 ; 33 ; 2 ; 10 w radio1 ; Radio 1 ESC\

ESC_35 ; 12 ; 33 ; 2 ; 10 ;;;;; 2 w radio2 ; Radio 2 ESC\

Reading a Button

You can read when check boxes or radio buttons have been checked, as described in the following
sections.

In all cases, a value will be sent to the host. This is formatted as:

<STX><value> <CR>

If an error is detected in the arguments, the value returned is a single question mark (STX ? CR).

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 43

Reading a Button’s Check State

To read the check state of a button, use the following AiF escape sequence:

ESC_36 ; 1 w control-id ESC\

Where:

control-id Is the id of the button.

All buttons have a check state, but it is only meaningful to read the state of check boxes and radio
buttons.

Reading Which Button is Checked

To read the id of a radio button in the group that is currently checked, use the following AiF escape
sequence:

ESC_36 ; 2 w control-id ESC\

Where:

control-id Is the id of the button group.

Setting/Clearing a Button

To set or clear a given radio button or check box, use the following AiF escape sequence:

ESC_37 ; 1 ; change w control-id ESC\

Where:

change 1 = clear (uncheck) the radio button or check box.
2* = set (check) the radio button or check box.

control-id Is the id of the button group.

When doing this to a radio button that is part of a radio button group, the button is always checked;
and the previously checked button in the group (there must be one) is always unchecked.

String Lists

String lists are used in conjunction with list boxes and combo boxes. String lists contain the entries
used to populate these boxes. String lists are created and managed quite separately to the list/combo
boxes which use them. You can therefore use a single string list in multiple boxes, and create and
destroy boxes without destroying the underlying data.

Creating String Lists

To create string lists, either download the strings from the host, or read them in from a PC file. The
second form is better suited to longer lists. Although there is no inbuilt limit to the number of items
in such a list, they are not intended for very large lists, because:

Â A list box control cannot contain more than 64k of text, for example, if the average string
length is 90 bytes, a list box will not hold more than approximately 700 items.

Â String lists are held in memory at all times.

C H A P T E R 2 A I F T O O L K I T

44 Developer’s Guide

Â The time required to create large lists will be unacceptable to users.

Â The time required to populate list/combo boxes with large lists will be unacceptable to
users.

A realistic limit is a few hundred items.

Format of String Lists

In its simplest form, a string list has an id (a name), and an ordered sequence of strings. The order
defines the default order in which the strings are displayed in a list or combo box (although this can
be changed when the boxes are actually created).

String lists may also store a second, hidden, string for each item. This string is not displayed to the
user, but can be used by the host application as an alternative way for list items to be specified in
messages exchanged between HostAccess and the host. See pages 45 and 46 for examples.

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 45

Manipulating String Lists

To create, add entries to and remove entries from, string lists, use the following AiF escape
sequence:

ESC_40 {; add} w string-id ; text ; entry1... ESC\

Where:

add 1* = add strings to string list.
2 = remove strings from string list.

string-id String list id.

text The display text of the string list entry before which the new strings are to be
inserted. Ignored if removing entries.

entry1 ... 1st and subsequent entries to be added/removed.

The entries in the list contain a ¡display¡ part, and optionally, a ¡hidden¡ part. If present, the hidden
part is separated from the display part by a comma (so you cannot have a comma in the display
part). If the hidden part is not given, a default hidden value will be automatically created if it is ever
needed- this will be a string representation of the position of the entry in the string list (starting

from 1; ¡1¡, ¡2¡, ¡3¡ etc).

List entries to be added/removed are given directly or indirectly. When given directly, a string
parameter specifies the list entry in the format:

<display-part> <, hidden-part>

If a string parameter starts with an ¡@¡ character, it is treated as an indirect entry. The ¡@¡ is
stripped off, and the remainder treated as a PC file name. The file contains a list of entries in the
above format. It is possible to mix the direct and indirect forms in a single escape sequence.

Note: the comma and ¡@¡ characters cannot normally be used in display strings because of their
special significance in the above formats. However they can be changed, see page 48 for details.

When adding strings, the second string parameter contains the display text of the existing string list
entry before which the new entries are to be inserted. If missing, the new entries are added to the
end of the list.

When removing entries, the hidden parts of entries are ignored.

Example of a string list

Consider a host application that needs to get the user to select a personnel record from a database.

Each record includes the person¡s name. Each record has a record number. The host application
wants to use a drop-down list style combo box (one in which the user cannot type an entry, but has

C H A P T E R 2 A I F T O O L K I T

46 Developer’s Guide

to select from the list) to get the name. The host application is not really interested in the text of the
name, but the record number it relates to.

This is more suited to a string list with hidden strings. The ¡display¡ strings are the names of the
people, the hidden strings are the associated record numbers. The host creates such a string list,

then associates it with a ¡dropdown combo¡ style box. The host also specifies that it wants to use
the hidden strings when exchanging information with HostAccess about the selected list items.
HostAccess will then send back the record number of the selected item, which the host application
can use directly.

Create a list of people, with hidden strings (record numbers in some database). The bulk of the list
is created from a PC file called people.lst. To this are added 2 people given directly. The list will be

called ¡people¡ and will eventually contain the following entries, in the order given:

Display text Hidden text Source

D. Bailey 173 People.lst

M. Woolley 174 People.lst

G. Baker 190 People.lst

F. Carden 191 People.lst

A.Hedgecock 160 Direct from host

P.Hall 143 Direct from host

ESC_40 w people ;; @people.lst ; A.Hedgecock, 160 ; P.Hall, 143 ESC\

people.lst is a standard DOS file with <CR><LF> characters separating each line of text. The file
name could also include the full directory path, for example c:\ windows\ data\ people.lst. By
default, the path is your HostAccess directory. In this example, people.lst looks like this:

D.Bailey, 173

M.Woolley, 174

G.Baker, 190

F.Carden, 191

Example 2 - String lists

The host application has a screen on which one of the pieces of information the user has to enter is
a city name. The host application designer chooses to do this with a simple combo box, which has a

list of common cities, but will also let the user type in a city that¡s not on the list. All the host
application wants to get from the user is the text of the city name.

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 47

This is best suited to the simple form of string list, without use of hidden strings. The host

downloads the list of cities in a string list, then creates a ¡simple combo¡ style box. When extracting
the selected city, or the name the user entered, HostAccess sends the relevant text to the host.

Example

Create a list containing the following cities: Birmingham, Bristol, Coventry, Leeds, London,

Manchester, and York, called ¡cities¡.

ESC_40 w cities ;; Birmingham ; Bristol ; Coventry ; Leeds ; London ; Manchester ; York ESC\

Reading From a String List

In all cases, a value will be returned to the host. This is formatted as:

<STX> value <CR>

If an error is detected in the arguments, the value returned is a single question mark (STX ? CR).

Reading String List Size

To return the number of items in a string list, use the following AiF escape sequence:

ESC_41 ; 1 w control-id ESC\

Reading Selected Display Text

To return the display text for the selected list item, use the following AiF escape sequence:

ESC_41 ; 2 ; item w control-id ESC\

Where item is the number of the relevant item (starting from 1).

Reading Selected Hidden Text

To return the hidden text for the selected list item, use the following AiF escape sequence:

ESC_41 ; 3 ; item w control-id ESC\

Where item is the number of the relevant item (starting from 1).

C H A P T E R 2 A I F T O O L K I T

48 Developer’s Guide

Clearing a String List

To delete all entries in a string list, use the following AiF escape sequence:

ESC_42 ; 1 w control-id ESC\

Where control-id is the control id for the string list.

Setting Special Characters

To set hidden text separator and indirect entry characters, use the following AiF escape sequence:

ESC_42 ; 2 w control -id ; string ESC \

Where string is a 2-character string holding these characters in order.

For example, to set the default special characters (, @) in the string list named string1, use the
following AiF escape sequence:

ESC_42 ; 2 w string1 ; ,@ ESC \

Note:

To include semicolons within strings, put a pipe character in front of the semicolon, e.g.

ESC_40 w TEST; ; This is a semicolon |; in the text ; this is item 2 in the list ESC \

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 49

Combo Boxes

The following sections describe how to create, read and manipulate combo boxes: A combo box
can combine an edit box with a drop-dwon string list (see example on page 50).

Creating a Combo Box

To create a combo box, use the following AiF escape sequence:

ESC_45 ; y ; x ; h ; wid {; vis} {; en} {; font} {; box} {; sort} {; bar} {; msg} {; auto} {; border} w c-id
{; str-id} {; sel} ESC\

Where:

y y co-ordinate of top of box.

x x co-ordinate of left of box.

h Height of box, in rows.

wid Width of box, in columns.

vis 1 = create hidden, 2* = create visible(*).

en 1 = initially disabled, 2* = initially enabled.

font Text font:

1* = Terminal.
2 = System.
3 = 10pt Helvetica.
4 = 8pt Helvetica.

box 2 = simple combo box.
3 =dropdown combo box.
4 =dropdown list combo box.
5 = simple combo box borderless.
6 =dropdown combo box, borderless.
7 = drop-down list combo box, borderless.

sort 1 = unsorted. The list items appear in the same order as in the string list.
2* = sorted. The list items will appear in alphabetical order.

bar 1 = no scroll bar, even if items too wide for box, 2* = use scroll bar, if needed.

msg 1*= messages sent between host and HostAccess will use display text.
2 = messages sent between host and HostAccess will use hidden text.

msg selects whether the host wishes to use the display text or hidden text of string
list entries when communicating with HostAccess and affects messages sent in both
directions. Str-id and sel will be interpreted as display or hidden text depending on
this value. It also affects subsequent event reporting (selection change and double
click events), and the way items are specified and transmitted in other escape
sequences.

C H A P T E R 2 A I F T O O L K I T

50 Developer’s Guide

auto 1 = no automatic horizontal scroll in edit box of combo box.
2* = automatic horizontal scroll in edit box of combo box.

border 1 = no border. The control uses the full depth of the control¡s rectangle, probably
displaying a partial item at the bottom.
2* = normal border, only show integral no. of items.

c-id Control id of combo box.

str-id String list id, optional. If not given, list will initially be empty.

sel Display/hidden text of item to be initially selected - optional. If not given, the first
displayed entry in the list/combo box will be initially selected.

Combo Box example

This example creates a string list with control id str-list. It then creates:

Â A 5x10 simple combo box (combo1) at (10,10).

Â A 7x12 dropdown combo box (combo2) at (10,25).

Â Aa 5x10 drop-down list combo box (combo3) at (10,40).

All the boxes use str-list for their contents. Note that combo1 has changed background colour. See
page 22 for details of this feature.

ESC_40 w str -list ;; line 1 ; line 2 ; line 3 ; line 4 ; line 5 ESC \

ESC_45 ; 10 ; 10 ; 5 ; 10 ;;;; 2 w combo1 ; str-list ESC\

ESC_14 ; 1 ; 8 w combo1 ESC\

ESC_45 ; 10 ; 25 ; 7 ; 12 ;;;; 3 w combo2 ; str-list ESC\

ESC_45 ; 10 ; 40 ; 5 ; 10 ;;;; 4 w combo3 ; str-list ESC\

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 51

Reading Combo Boxes

You can read from a combo box, using the escape sequence described in the following sections to
return a value to the host.

In all cases, a value will be sent to the host. This is formatted as:

<STX><value> <CR>

If an error is detected in the arguments, the value returned is a single question mark (STX ? CR).

Reading the Current Item in a Combo Box

To return the contents of the currently selected item, use the following AiF escape sequence:

ESC_46 ; 1 w control-id ESC\

The contents consists of either the display or hidden text for the selected item, depending on the
value of the msg parameter when the combo box was created. See page 49.

If hidden text is returned, but was not defined for the selected entry, the position of the item in the
string list is returned. This may not be the position of the selected item as displayed. If the box was
created with alphabetic sorting turned on, the order of presentation in the combo box is quite
separate from the order in the string list. The value that is returned will always be the order in the
string list.

If no item is selected, the value returned is a single question mark (STX ? CR).

Reading if a Combo box is Visible

To return whether or not the list portion of a combo box is ¡dropped down¡ (i.e. visible), use the
following AiF escape sequence:

ESC_46 ; 3 w control-id ESC\

The value returned is 1 if it is not visible, 2 if it is.

Reading Changes to Combo Boxes

To read if the contents of the box have been changed by the user, use the following AiF escape
sequence:

ESC_46 ; 4 w control-id ESC\

The value returned is 1 if unchanged, 2 if changed.

This applies to simple or dropdown combo box styles only (not dropdown list).

Reading the Contents of a Box

To read the contents of a box, use the following AiF escape sequence:

ESC_46 ; 5 {; length} w control-id ESC\

Where:

Length The maximum length that is to be returned. (*=80).

This applies to simple or dropdown combo box styles only (not dropdown list).

C H A P T E R 2 A I F T O O L K I T

52 Developer’s Guide

The contents of the box are returned.

Reading Selected Characters

To return edit box selection indication (telling the host which characters are selected), use the
following AiF escape sequence:

ESC_46 ; 6 w control-id ESC\

The value returned is two comma-separated integers n,w, where:

n The number of the first character in the selection (starting from 1).

w The number of selected characters.

If nothing is selected, the return value is ¡1,0¡.

This applies to simple or dropdown combo box styles only (not dropdown list).

Setting the Current Item in a Combo Box

To set an item to be selected, use the following AiF escape sequence:

ESC_47 ; 1 w control-id ; item ESC\

Where:

item Display/hidden text of the required items.

The items are specified as display/hidden text of the required items, depending on the value passed
in the msg parameter when the combo box was created.

See page 49 for details.

Changing the String List to be Displayed in a Box

To change the string list that is to be displayed in the box, use the following AiF escape sequence:

ESC_47 ; 2 w control-id ; string-id ESC\

Where string-id is the (optional) string list id. If omitted, the box becomes empty.

Limiting Text in Combo Boxes

To limit the amount of text that may be entered, for simple or dropdown combo box styles only,
use the following AiF escape sequence:

ESC_47 ; 3 ; limit w control-id ESC\

Where limit is the limit.

Setting the Edit Box Selection Range

To set the edit box selection range, for simple or dropdown combo box styles only, use the
following AiF escape sequence:

ESC_47 ; 4 ; start ; length w control-id ESC\

Where:

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 53

Start The position (starting from 1) of the first character to be selected.

Length The number of characters that are to be selected.

C H A P T E R 2 A I F T O O L K I T

54 Developer’s Guide

Hiding and Showing Combo Boxes

To drop-down (show) or close up (hide) the list box part of the combo box, for simple or
dropdown combo box styles only, use the following AiF escape sequence:

ESC_47 ; 5 {; show} w control-id ESC\

Where:

show 1 = hide.
2* = show.

Using the Clipboard (combo box styles)

For simple or dropdown combo box styles only, you can use the clipboard facilities as follows:

To cut the selection in the box to the clipboard, use the following AiF escape sequence:

ESC_47 ; 6 w control-id ESC\

To copy the selection in the box to the clipboard, use the following AiF escape sequence:

ESC_47 ; 7 w control-id ESC\

To paste the clipboard contents into the box at the current insertion point, use the following AiF
escape sequence:

ESC_47 ; 8 w control-id ESC\

This is ignored if the clipboard does not contain text.

To clear the current selection in the box (deleting it without placing it in the clipboard.), use the
following AiF escape sequence:

ESC_47 ; 9 w control-id ESC\

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 55

List Boxes

The following sections describe how to create both ordinary and incremental list boxes, how to read
from and manipulate a list box.

Creating list boxes

To create a list box, use the following AiF escape sequence:

ESC_45 ; y ; x ; h ; wid {; vis} {; en} {; font} {; box} {; sort} {; bar} {; msg} {; auto} {; border}
{; size} {; style} w id {; str-id} {; sel} {; top} ESC\

Where:

y y co-ordinate of top of box.

x x co-ordinate of left of box.

h Height of box, in rows.

wid Width of box, in columns.

vis 1 = create hidden, 2* = create visible.

en 1 = initially disabled, 2* = initially enabled.

font Text font: 1* = terminal, 2 = system, 3 = 10pt Helvetica, 4 = 8pt
Helvetica.

box 1* = list box, possibly incremental, see page 56 for details.
8 = tabular list box. This is a list box supporting tab characters, allowing
you to input data in columns, see page 57 for an example.

sort 1 = unsorted. The list items appear in the same order as in the string
list.
2* = sorted. The list items will appear in alphabetical order.

bar 1 = no horizontal scroll bar, even if items too wide for box.
2* = use horizontal scroll bar, if items too wide for box.

msg 1* = messages sent between host and HostAccess will use display text.
2 = messages sent between host and HostAccess will use hidden text.

msg selects whether the host wishes to use display or hidden text.

auto 1 = no auto horizontal scroll in edit box of combo box.
2* = auto horizontal scroll in edit box of combo box.

C H A P T E R 2 A I F T O O L K I T

56 Developer’s Guide

border 1 = no border, list will try to use whole of control rectangle.
2* = normal border, only show integral no. of items.
3 = 3D Sculpted list type.

size Sets the number of elements the list box will hold. For use with
incremental list boxes. This must be at least one more than the number
of elements.

style 0 = * standard incremental. Registers an event if a user pages off the
bottom of the list box.

1 = extended incremental style. Registers events if the following occurs:
 1: paging off the bottom of the list box.
 -1: Paging off the top of the list box.

id Control id of list box.

str-id String list id, optional. If not given, list will initially be empty.

sel Display/hidden text of item to be initially selected - optional. If not
given, the first displayed entry in the list/combo box will be initially
selected.

top Display/hidden text of item to be initially shown at the top of the box –
optional. By default, the initially selected item is placed top most if
possible.

Incremental List Boxes

You can use this feature to create list boxes with room for many entries, and create a corresponding
string list with only a few strings.

This feature is useful if data transmission is slow, allowing you to update the list box incrementally
as the user scrolls downwards.

You can get HostAccess to send notification messages to the host, whenever the user scrolls off the
bottom of the visible strings, and so reveal an undefined entry. To do this, you need to enable event
number 13.

This notification takes the format:

 <STX>13,<element number>,<number of elements><CR>

If the host defines a string list which is larger than the total elements set then the total elements
becomes the number of strings in the string list.

When the notification is received, the host should respond by adding the required string to the end
of the string list associated with the list box.

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 57

See page 23 for a description of enabling event numbers.

See page 45 for a description of adding a string to a string list.

Note: sorting is automatically disabled for incremental list boxes.

Example: Incremental List Boxes

The host creates a list box with 100 entries, containing the entries in a string list named Fill -up,
which contains only 10 strings.

The list box will display the 10 given strings and the remaining 90 will be empty.

The user may scroll down to reveal element 11 which is not available. HostAccess then sends

<STX>13,11,1<CR>

to the host. The host will then respond by adding a string (say, “Line 11”) to the end of the string
list (after “Line 10”) associated with the list box, using the following AiF sequence:

ESC_40 w fill-up ; Line 10 ; Line 11 ESC\

The text “Line 11” will then be displayed in the list box.

Example 2: Incremental List Box

The following example creates a string list named str-list, containing the data described, then

creates a simple list box, and a tabular list box, then sets the tab stops. The “Č” symbol is used
here to denote a tab character.

ESC_40 ; 1w str-list ;; 012345678901234567890123456789012345 ; NameČČDept.ČExt. ;
EddyČStabiloČČGraphicsČ20 ; DavidČBaileyČDevelopmentČ29 ;
CynthiaČKadogoČLegalČ42 ; JohnČMerrellsČDevelopmentČ40 ;
StoremanČNormanČStoresČ45 ESC\

ESC_45 ; 1 ; 1 ; 4 ; 20 ;;; 3 ; 1 w listbox1 ; str-list ESC\

ESC_45 ; 10 ; 1 ; 7 ; 40 ;;;; 8 ; 1w listbox2 ; str-list ESC\

ESC_47 ; 11 ; 10 ; 20 ; 32 ; 40 ; 50 w listbox2 ESC\

ESC_14 ; 16 ; 4 w listbox2 ESC\

C H A P T E R 2 A I F T O O L K I T

58 Developer’s Guide

Note that the first box has a different font (8 point Helvetica) and background colour.

Reading from a List Box

You can read from a list box, using the AiF escape sequence described in the following sections to
return a value to the host. This return value is formatted as:

<STX> value <CR>

If an error is detected in the arguments, the value returned is a single question mark (STX ? CR).

Reading the Current Item

To return the display or hidden text of the currently selected item, use the following AiF escape
sequence:

ESC_46 ; 1 w control-id ESC\

The text returned depends on the value passed in the msg parameter when the list box was created.
See page 52 for details.

If no hidden text was specified for the selected entry, the position of the item in the string list is
returned.

Note: this may not be the position of the selected item as displayed. If the box was created with
alphabetic sorting turned on, the order of presentation in the list box is quite separate from the
order in the string list. The value that is returned will always be the order in the string list.

If no item is selected, ¡?¡ is returned.

Reading the Top Item

To return the display or hidden text of the top visible item, use the following AiF escape sequence:

ESC_46 ; 2 w control-id ESC\

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 59

Reading Total Size

To return the total number of elements defined, use the following AiF escape sequence:

ESC_46 ; 7 w control-id ESC\

C H A P T E R 2 A I F T O O L K I T

60 Developer’s Guide

Manipulating a List Box

The following areas are described:

Â Setting the current item.

Â Changing the string list to be displayed.

Â Converting to incremental style.

Setting the Current Item

To set an item to be selected, and optionally also to be the topmost visible item, use the following
AiF escape sequence:

ESC_47 ; 1 w control-id ; item ESC\

Where:

item Display/hidden text of the required items.

The items are specified as display/hidden text of the required items, depending on the value passed
in the msg parameter when the list box was created

See page 55 for details.

Changing the String List to be Displayed

To change the string list that is to be displayed in the box, use the following AiF escape sequence:

ESC_47 ; 2 w control-id ; string-id ESC\

Where string-id is the (optional) string list id. If omitted, the box becomes empty.

Converting to Incremental Style

To convert a non-incremental style list box into an incremental style list box, and set the total
number of elements, use the following AiF escape sequence:

ESC_47 ; 10 {; elements} w control-id ESC\

Where:

elements The total number of elements in the box.

If the list box is already of incremental style then the total number of elements will be set to the new
value. The total number of elements is always greater than or equal to the number of strings in the
associated string list. This will fail if the list box is sorted.

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 61

Setting Tabs

If you have created a tabular list box, you can set one or more tab stops for that box. To set tab
stops, use the following AiF escape sequence:

ESC_47 ; 11 ; width1... w control-id ESC\

Where:

width1 ... Width of tab stops (in characters). To set all the tab stops to be the same width
send only one value. To set a list of tab stops send a tab position value for each
tab stop.

control-id Control id of the tabular list box.

By default the tab stops are set to be half a system character width. The values must be sorted in
increasing order.

Note: Back-tabs are not supported.

C H A P T E R 2 A I F T O O L K I T

62 Developer’s Guide

Edit Boxes

The following sections describe how to create, read and manipulate an edit box.

Creating an Edit Box

To create an edit box, use the following AiF escape sequence:

ESC_50 ; y ; x ; h ; wid {; vis} {; en} {; font} {; display} {; auto} {; acc} {; focus} {; edit} {; border}
{; scroll} ins/ovr w control-id {; contents} ESC\

Where:

y y co-ordinate of top of box.

x x co-ordinate of left of box.

h Height of box, in rows.

wid Width of box, in columns.

vis 1 = create hidden, 2* = create visible.

en 1 = initially disabled, 2* = initially enabled.

font Selects font: 1* = terminal, 2 = system, 3 = 10pt Helvetica, 4 = 8pt
Helvetica.

display 1* = display contents normally.
2 = force contents to upper case.
3 = force contents to lower case.

4 = ¡password¡ - contents displayed as asterisks.

(The password character may be switched from asterisk to something else).

auto 1 = do not automatically (horizontally) scroll the box.
2* = automatically (horizontally) scroll the box.

acc 1* = read/write access.
2 = read only access – user cannot change contents.

focus 1* = initially, contents not selected when box receives focus.
2 = initially, contents selected when box receives focus.

edit 1 = single line edit (* if height is 1).
2 = multi-line edit (* if height >1).
3 = multi-line edit with auto vertical scrolling.

border 1 = no border. The edit box height is exactly the multiple of character cells
given.
2* = border. The box extends 4 pixels above and below the normal box
rectangle This means that you cannot have two consecutive edit boxes on
two consecutive lines.
3= 3D border.

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 63

ins/ovr 1= disable.
2= ins/ovr enabled.

scroll 1* = no scroll bars.
2 = horizontal scroll bar.
3 = vertical scroll bar.
4 = horizontal & vertical scroll bars.

control-id Control id.

contents Initial contents of box - optional.

The height of the box that you pass relates to the height in character cells of the control, and not to
the number of lines of text the control will hold.

Creating an edit box example

This example creates a 3x10 edit box at (12,10), id edit, with a test string and scroll bar.

ESC_50 ; 12 ; 10 ; 3 ; 10 ;;;;;;;;;; 2 w edit ; Test text ESC\

C H A P T E R 2 A I F T O O L K I T

64 Developer’s Guide

Reading From an Edit Box

To read a value from an edit box, use the AiF escape sequences as described in the following
sections.

In all cases, a value will be sent to the host. This return value is formatted as:

<STX><value> <CR>

If an error is detected in the arguments, the value returned is a single question mark (STX ? CR).

Reading a Line in an Edit Box

To read the contents of a given line in the box, use the following AiF escape sequence:

ESC_51 ; 1; max-len ; line w control-id ESC\

Where:

max-len Is the maximum length of the text returned. (*=80).

Remember to set max-len when reading a multiline control, since their contents
will often exceed 80 characters.

line Is the number (starting from 1) of the line you want. (*=all lines).

For single line edits, line is ignored, and the whole contents of the single line are
returned, followed by CR.

For multi line edits, If line is given (and is greater than zero), then the contents of
the specified line, only, are returned in the same format as for a single line edit.

If line is not given (or is given as 0), all lines in the edit box will be returned. Each
line will be separated from the next by CR. Preceding the lines is the line count.

For example, if a multi-line edit contains 2 lines ¡hello¡ and ¡there¡, the reply
would look like this:

2,hello<cr>there<cr>

For example, to return the contents of line 3 of edit box ¡ed¡, use:

ESC _ 51 ; 1 ;; 3 w ed ESC\

80 characters at most will be returned.

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 65

Examining Details of Lines

To read the number of lines in a box (always 1 for single line edit), use the following AiF escape
sequence:

ESC_51 ; 2 ; w control-id ESC\

To read the current length of a given line, use the following AiF escape sequence:

ESC_51 ; 3 {; line} w control-id ESC\

Where:

line The relevant line number (*=1).

To read the line number of the first visible line in the box (for multi-line edits only), use the
following AiF escape sequence:

ESC_51 ; 4 ; w control-id ESC\

Detecting Changes in an Edit Box

To return a flag that says if the edit box contents have been changed by the user.

ESC_51 ; 5 {; reset} w control-id ESC\

Where:

reset 0* = do not reset changed flag.
1 = reset changed flag.

The value returned is ¡1¡ if no change, or ¡2¡ if changed.

Telling the Host Which Characters are Selected

To return a selection indication - telling the host which characters are selected (for single line edits),
use the following AiF escape sequence:

ESC_51 ; 6 ; line w control-id ESC\

The value returned is two comma-separated integers n,w, where:

n The number of the first character in the selection (starting from1).

w The number of selected characters.

If nothing is selected, the return value is ¡1,0¡.

C H A P T E R 2 A I F T O O L K I T

66 Developer’s Guide

Manipulating an Edit Box

To manipulate an edit box, use the following AiF escape sequence features.

Â Setting contents in an edit box.

Â Limiting text entered.

Â Scrolling.

Â Changing ‘Password’ Character.

Â Setting Selection Range.

Â Using the Clipboard.

Â Initialising a Multi-line Edit Box.

There is no reply to this escape sequence.

Setting Contents in an Edit Box

To set the contents of an edit box, use the following AiF escape sequence:

ESC_52 ; 1 w control-id ; contents ESC\

Where:

contents The new contents of the edit box.

Limiting Text Entered

To limit the amount of text that may be entered into the box, use the following AiF escape
sequence:

ESC_52 ; 2 ; limit w control-id ESC\

Where:

limit The maximum number of characters. This is a total limit, not just the limit on a single
line (multi-line edit box users take note).

Scrolling

To scroll an edit box so that that the given line number is the first visible line (for multi line edits
only), use the following AiF escape sequence:

ESC_52 ; 3; line w control-id ESC\

Where

 line The relevant line number.

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 67

Changing “Password” Character

To change the “password” character, use the following AiF escape sequence:

ESC_52 ; 4; w control-id ; char ESC\

Where:

char The password character.

Setting Selection Range

To set the selection range (for single line edit boxes only), use the following AiF escape sequence:

ESC_52 ; 5; start ; len w control-id ESC\

Where:

start The location (starting from 1) of the first character to be selected.

len The number of characters that are to be selected.

Using the Clipboard

You can use the clipboard facilities as described:

To cut the selection in the edit box to the clipboard, use the following AiF escape sequence:

ESC_52 ; 6 w control-id ESC\

To copy the selection in the edit box to the clipboard, use the following AiF escape sequence:

ESC_52 ; 7 w control-id ESC\

To paste the clipboard contents into the edit box at the current insertion point, use the following
AiF escape sequence:

ESC_52 ; 8 w control-id ESC\

This is ignored if the clipboard does not contain text.

To clear the current selection in the edit box (i.e., deletes it without placing it in the clipboard.), use
the following AiF escape sequence:

ESC_52 ; 9 w control-id ESC\

C H A P T E R 2 A I F T O O L K I T

68 Developer’s Guide

Initialising a Multi-line Edit Box

To initialise a multi-line edit box with the contents of the named string list, use the following AiF
escape sequence:

ESC_52 ; 10 w control-id; string ESC\

Where:

string The string list id.

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 69

Validated Edit Boxes

Validated edit boxes are single-line edit boxes that may only contain information of a specific type,
and are validated so that they only contain information of that specific type:

Â An integer.

Â A date.

Â An amount of money.

Once you have defined the type of information that the edit box contains, the contents of the edit
box must always conform to the format you have specified. The contents can only be changed to
valid formats.

For example, if you create a validated edit box for an integer, then that box only accepts valid
integers as input. All other inputs will be ignored (sounding a beep).

Creating Validated Edit Boxes

To create a validated edit box, you need to:

1. Create a normal edit box, defining its size to be consistent with the data it contain. For
example, if you want a validated edit box to contain an integer between 100 and 999, you
should create the edit box to be 1 character high and 3 characters wide.

2. Attach a validation to it, defining the allowed contents of that edit box. You can attach
integer validations, date validations or currency validations, depending on the type of data
required. These validations are described in the following sections.

Validated edit boxes only allow single inputs, on single lines: one date, one number, or one sum of
money. If you create a multi-line edit box, then attach a validation to it, the edit box will only allow
inputs on the top line. If the initial contents of the edit box do not conform to this format, they are
removed. If you destroy an edit box, the associated validation is also destroyed. You can change the
validated edit box by attaching a new validation.

Integer Validations

To attach an integer validation to an edit box (defining that box to contain only integers), use the
following AiF escape sequence:

ESC_70 ; 1 {; low ; high} w control-id ESC\

Where:

low Minimum allowed value for integers.

high Maximum allowed value for integers. Must be higher than low.

control-id Control id of edit box.

C H A P T E R 2 A I F T O O L K I T

70 Developer’s Guide

Note: if you specify a low parameter, you must also specify a high parameter.

If low and high are both zero, or are not specified, then there are no limits to the integer.

Example

To create an edit box called emp-nos, use the following AiF escape sequence:

ESC_50 ; 10 ; 10 ; 1 ; 2 w emp-nos ; 17 ESC\

To then attach a validation to that box, such that the box only contains valid integers between the
values of 1 and 32, use the following AiF escape sequence:

ESC_70 ; 1 ; 1 ; 32 w emp-nos ESC\

Date Validations

To attach a date validation to an edit box, use the following AiF escape sequence:

ESC_70 ; 2 {; format} w control-id ESC\

Where:

format The format of the date information:

1 = long date format (for example, Monday, 20 June, 1996).

2 = short date format (for example, 20/06/95).

3* = Abbreviated date (for example, 20/06 - defaults to current year).

control-id Control id of edit box.

The format for dates is defined by Windows. To change this, run the International program within
Windows Control Panel.

The host always stores dates in the following format:

dd/mm/yyyy

irrespective of the user¡s national settings. This increases simplicity over national borders.

Special Date Strings

When displaying date information, you can pass a number of special strings that relate to the current
date:

yesterday

today

tomorrow

next <monday/tuesday/wednesday/thursday/friday/saturday/sunday>

last <monday/tuesday/wednesday/thursday/friday/saturday/sunday>

These strings are not case-sensitive.

Changing the date

You can use the following key presses to change the date within an edit box:

Up Arrow Add a day to the date.

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 71

Down Arrow Subtract a day from the date.

PageUp Add a month to the date.

PageDown Subtract a month from the date.

Home Set the date to today (the current date).

When altering the month, the day of month is adjusted within the bounds of the month. For
example, adding a month to 31/01 gives 28/02.

Note: when within a date-validated edit box, you cannot use the PageUp and PageDown keys to

scroll back/forward through the current session¡s terminal backpages.

Edit Examples

To display an edit box called payday, containing the date for the next Friday from the current date,
use the following AiF escape sequence:

ESC_50 ; 5 ; 5 ; 3 ; 10 w payday ; next friday ESC\

To check that the date information in an edit box called date is valid, use the following AiF escape
sequence:

ESC_70 ; 2 w date ESC\

C H A P T E R 2 A I F T O O L K I T

72 Developer’s Guide

Currency Validations

To attach a currency validation to an edit box, use the following AiF escape sequence:

ESC_70 ; 3 w control-id {; format} ESC\

Where:

control-id Control id of edit box.

format The currency format – see Defining Currency Format below.

The default currency format is defined by Windows. To alter this, run the International program
within Windows Control Panel.

Defining Currency Format

You can use the format parameter to define a currency format. This format consists of a series of
special characters based on the Visual Basic formatting commands, as follows:

Symbol Meaning

! Display currency symbol.

Display zero or more digits if before a decimal point.
Display up to 1 digit if after the decimal point.

0 Display one or more digits; or 0, for leading and trailing zeros.

. Display a decimal point.

, Allow the triad separator between triples of digits.

% Percentage display (number is multiplied by 100, and suffixed with a % sign).
This cannot be used with the ! symbol.

- Force a “-” symbol before negative numbers (the default).

+ Force a “+” symbols before positive numbers.

() Enclose negative numbers in parentheses.

òstringó Allow literal string. This is collected into one complete string, placed at the
end of the currency string. (for example “Gross”, “per annum”).

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 73

Currency Examples

To format a currency displayed as a currency symbol, followed by zero or more digits, then a
decimal point, then a trailing zero or one digit, use the following string:

!#.0

So to attach a currency validation in this format, use the following AiF escape sequence:

ESC_70 ; 3 w edit ; !#.0 ESC/

The following table shows how particular sums can be represented:

Sum Format

 # !#.# (#.00) ò poundsó

1.2 1 £1.2 1.20 pounds

12.52 13 £12.5 12.52 pounds

-23.532 -24 -£23.5 (23.53) pounds

Note: Blank edit boxes are always displayed as empty, despite any formatting to the contrary.

C H A P T E R 2 A I F T O O L K I T

74 Developer’s Guide

Static Labels

You use a static label as a means of getting proportional text on the screen.

To create a static label of a given size, use the following AiF escape sequence:

ESC_53 ; y ; x ; h ; wid {; vis} {; en} {; font} {; pos} {; bord} w control-id {; text} {; face} ESC\

Where:

y Y co-ordinate of top of label.

x X co-ordinate of left of label.

h Height of label, in rows.

wid Width of label, in columns.

vis 1 = create hidden.

2* = create visible.

en 1 = initially disabled.

2* = initially enabled.

font Font: 1* = Terminal.

2 = System.

3 = 10pt Helvetica.

4 = 8pt Helvetica.

5 = Font face name (see face).

pos 1 = left aligned.2 = right aligned.

3* = centred.

bord 1* = no border.

2 = border.

control-id Control id.

text Text to be displayed.

face Font face name (only if font = 5) e.g. “Times New Roman”.

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 75

Changing the Windows pointer

It is now possible to change the Windows pointer (cursor) style via the AiF, although this will only
apply to the terminal window. Any GUI controls will over ride this style while the pointer is over
the area.

Use the following AiF sequence:

ESC_56 ; arrow w ESC \

Where:

Arrow

 0 Restore Standard Pointer.

 1 Arrow.

 2 Wait.

 3 Cross.

 4 I Beam.

 5 Icon.

 6 Up arrow.

 10 Size.

 11 Size NESW.

 12 Size NS.

 13 Size NWSE.

 14 Size WE.

Creating a Modal Message Box

A modal message box is a dialog box with a multi-line message, a caption, optionally a bitmap to the
left of the message, and one of a variety of standard button combinations. To create a modal
message box use:

ESC_91 ; style ; y ; x ; rtn w caption ; message ; spec ; help ; context ESC\

Where:

style Button Style. The buttons set as default (i.e. those that respond when the ENTER
key is pressed) are marked with an asterisk.

1: OK + cancel(*).

3: OK(*) + cancel.

5: yes + no + cancel(*).

7: yes(*) + no + cancel.

C H A P T E R 2 A I F T O O L K I T

76 Developer’s Guide

9: yes + no(*) + cancel.

11*: OK.

13: yes(*) + no.

15: yes + no(*).

y Y co-ordinate of message box.

x X co-ordinate of message box.

rtn *1 -send response on button click.

2 - do not send response.

caption Caption (title).

message Message itself. Separate each paragraph with a CR.

spec Decoration button spec. See page 39 for further information.

Note: Previous options of this function are still supported but should be changed to reflect the
revised options as above.

Positioning the Box

If x and y are present, and greater than zero, the message box is positioned so the top left of the
box coincides with the screen pixel co-ordinate of the top left pixel of the identified character cell in
the terminal window. If this forces part of the message box off screen, it is moved if possible to get
the whole box on screen.

If either x or y are 0 or omitted, the message box will be centred on the terminal window.

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 77

Returning Values to the Host

The result is returned to the host as

 <STX> n <CR>

Where:

n 1 = ¡no'.

2 = ¡yes¡ or ¡OK¡.

3 = ¡cancel¡, escape pressed, or msg box closed.

Returning Values to the Host Example

To create a Modal message box at 10,10, with a title, 1 line of text, and Yes/No/Cancel/Help
buttons, use:

ESC_91 ; 6 ; 10 ; 10 w MBox Test ; Click any button - Cancel has focus ESC\

C H A P T E R 2 A I F T O O L K I T

78 Developer’s Guide

Status Bar

You can use AiF sequences to modify the status bar for your application:

Â Hiding/showing the status line.

Â Displaying your own text messages.

Â Dividing the status line into panes, and setting the contents of each pane.

The following sections describe how to use these functions.

Hiding/Showing the Status Line

To hide/show the status line, use the following AiF escape sequence:

ESC_92 ; 3 ; {show} w ESC\

Where:

show 1 = hide status line.

2* = show status line.

Hiding the status line will increase the area available for the terminal window display.

Setting Status Line Text

To set the main text of the status line, use the following AiF escape sequence:

ESC_92 ; 1 ; {timeout} w text ESC\

Where:

timeout Number of seconds message is to remain on screen.
(*=no timeout - message remains until the next message is sent).

text The text of the status line.

For example, to send the text “Press F1 for help” to the status line, use:

ESC_92 ; 1 w Press F1 for help ESC\

Setting Status Line Pane Contents

To set the contents of one or more panes, use the following AiF escape sequence:

ESC_92 ; 2 ; pane; contents ; w ESC\

Where:

pane Pane number (1, 2 or 3).

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 79

contents Pane contents:

1 = empty pane.

2 = num. Lock status.

3 = caps lock status.

4 = time (hh:mm format).

5 = date (dd-mmmm-yy format).

6 = cursor position (row:column format).

To set multiple panes in one escape, repeat pairs of integer arguments.

Setting Status Line Pane Example

To set 3 panes as follows:

1 = cursor position.

2 = num lock status.

3 = empty.

Use the following AiF escape sequence:

ESC_92 ; 2 ; 1 ; 6 ; 2 ; 2 ; 3 ; 1 w ESC\

C H A P T E R 2 A I F T O O L K I T

80 Developer’s Guide

Commands for menus, toolboxes and toolbars

Commands are controls associated with menus, toolboxes or toolbars. Commands can be associated
with text (for use in menus), or with button images (for use in toolbars and toolboxes).You must
create commands to put in toolbars, boxes and menus before you create the toolbars, boxes and
menus.

Once a command has been created, you make it visible to the user by adding it to a ¡command

container¡ object, such as a toolbar, and then make the toolbar visible.

Note: Commands in use in menus should not be used to load application menus as these will not
work.

Creating Commands

To create or add a command definition, use the following AiF escape sequence:

ESC_33 ; 5 ; type {; help} w c-id {; menu} {; spec} {; stat} {; wfile} {; wcont} {; r-id} ESC\

Where:

type Command type (only relevant for toolboxes and toolbars) and initial state:

1 = pushbutton-type command, disabled.

2 = pushbutton-type command, enabled.

3 = check box-type command, unchecked, disabled.

4 = check box-type command, unchecked, enabled.

5 = check box-type command, checked, disabled.

6 = check box-type command, checked, enabled.

7 = check box-type command, indeterminate, disabled.

8 = check box-type command, indeterminate, enabled.

help WinHelp command. See page 90 for details of invoking Windows help.

c-id Id for new command.

menu Menu text. i.e., the text to be used when this command is added to a menu.

spec Image specification when this command is used in a floating toolbox or toolbar. The
same image is used for toolboxes and toolbars. The images for all button states
(enabled, checked etc.) is automatically computed.

See Appendix A, Describing Images for details on specifying an image.

stat Status line prompt. This text will be displayed in the status line when the user selects
the command (e.g., by holding down a button in a toolbox).

wfile WinHelp filename - used when user requests help for this command.

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 81

wcont WinHelp context.

r-id Radio command group id.

Changing Command Type and State

To change a command type and state, use the following AiF escape sequence:

ESC_33 ; 6 ; type w c-id ESC\

Where:

type New command type and state. Values are 1 - 8, as for creating commands, see page
80 for details.

c-id Command id.

All toolboxes and toolbars that currently show the command are redrawn to reflect the new state.

Reading a Command

To read the current type and state for a given command, use the following AiF escape sequence:

ESC_33 ; 7 w c-id ESC\

Where:

c-id The command id.

The format of the value returned is as follows:

<STX> state<CR>

Where:

state The current state (1..8).

C H A P T E R 2 A I F T O O L K I T

82 Developer’s Guide

Setting Command Images in Toolbars/Toolboxes

To explicitly set the images to be used to show commands in toolboxes and toolbars, use the
following AiF escape sequence:

ESC_33 ; 8 w c-id ; norm ; dis ; check ; indet ; norm2 ; dis2 ; check2 ; indet2 ESC\

Where:

c-id Command id.

norm Image spec for toolbar, ¡normal¡.

dis Image spec for toolbar, ¡disabled¡.

check Image spec for toolbar, ¡checked¡.

indet Image spec for toolbar, ¡indeterminate¡.

norm2 Image spec for toolbox, ¡normal¡.

dis2 Image spec for toolbox, ¡disabled¡.

check2 Image spec for toolbox, ¡checked¡.

indet2 Image spec for toolbox, ¡indeterminate¡.

This allows different images to be used for toolbars and toolboxes, and/or different images for the
different command states.

This should be done before adding the command to a toolbox/toolbar. It should not be used to
dynamically change the button once visible.

Adding a New Command Group

To add a new command group, use the following AiF escape sequence:

ESC_33 ; 9 w group-id ESC\

Where:

group-id The command group id.

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 83

New Command Group Example

The following shows a toolbox containing eight buttons (commands), in all eight possible states.

All the commands use the same bitmap image. The toolbox does not have focus, and has a
minimise box attached. The code is implemented using the following sequences

ESC_33 ; 1 ; 10 ; 10 ;;; 2 w tbox ; Sample ; c:\windress\tiger.ico ESC\

ESC_33 ; 5 ; 1 w tcom1 ;; file=c:\bitmaps\tree.bmp ESC\

ESC_33 ; 5 ; 2 w tcom2 ;; file=c:\bitmaps\tree.bmp ESC\

(etc ...)

ESC_33 ; 4 w tbox ; tcom1 ESC\

ESC_33 ; 4 w tbox ; tcom2 ESC\

(etc ...)

ESC_33 ; 2 w tbox ESC\

C H A P T E R 2 A I F T O O L K I T

84 Developer’s Guide

Toolbars and Toolboxes

You can use AiF escape sequences to create and use floating toolbars and toolboxes. The following
sections describe how to use these functions:

Â Creating a floating toolbox.

Â Hiding/showing a toolbox.

Â Creating a toolbar.

Â Adding a button to a toolbar/toolbox.

Before creating a toolbox or toolbar, you must create commands to put in those toolboxes, see
page 80 for details of commands.

Creating a Floating Toolbox

To create a floating toolbox, use the following AiF escape sequence:

ESC_33 ; 1 ; x ; y {; mod} {; border} {; min} {; orig} w t-id {; title} {; icon} ESC\

Where:

x x co-ordinate of top of toolbox (see orig, below).

y y co-ordinate of left of toolbox (see orig, below).

mod No longer supported – defaults to modeless.

border No longer supported – defaults to no border.

min No longer supported – defaults to do not display a minimise box.

orig Window origin:

1 = relative to the screen, in pixels.

2 = relative to the application window, in pixels.

3* = relative to the main terminal window, in character cells.

t-id Unique toolbox id.

title Title text for toolbox.

icon Icon file name, to be used when toolbox is minimised. Must be a .ico file.

If not given, a default icon will be used. Only relevant if a minimise box is displayed.

Note: the toolbox will be hidden by default - you have to show it to display the toolbox on the
screen.

Hiding/Showing a Toolbox

To hide or show a toolbox, use the following AiF escape sequence:

ESC_33 ; 2 ; {show} w control-id ESC\

Where:

show 1 = hidden.

2 = minimised.

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 85

3* = normal.

4 = maximised.

control-id Toolbox control id.

Creating a Toolbar

To create a toolbar, use the following AiF escape sequence:

ESC_33 ; 3 ; {bar} w control-id ESC\

Where:

bar 1* = toolbar initially empty.

2 = base toolbar on default HostAccess toolbar.

control-id Toolbar control id.

Adding a Button to a Toolbar/Toolbox

You must create the toolbar/toolbox before you can add a button. The button command must
already exist before you create the button. You should add all commands to a toolbox/bar whilst it
is hidden, and then show it at the end. To add a button to a toolbox/toolbar, use the following AiF
escape sequence:

ESC_33 ; 4 {; place} ; gap w t-id ; c-id ESC\

Where:

place Where to place new button: 1* = to right of last; 2 = start new row of buttons.

gap Gap between new button and previous button. If adding to same row, this is the
number of pixels of gap inserted to the left of the new button. When starting a new
row, this is the number of pixels of gap to insert above the new button.

t-id Toolbox/toolbar id.

c-id Command id (the id of an existing command). May be an internal command.

Toolbar Button Example

The following example:

Â Creates a floating toolbox named tbox, with header text “Sample”.

Â Creates two commands, tcom1 and tcom2, and links these commands with bitmap images.

Â Adds both tcom1 and tcom2 to the floating toolbox tbox.

Â Shows the floating toolbox.

This can be coded as follows:

ESC_33 ; 1 ; 10 ; 10 w tbox ; Sample ESC\

ESC_33 ; 5 ; 2 w tcom1 ;; file=c:\bitmaps\tree.bmp ESC\

ESC_33 ; 5 ; 2 w tcom2 ;; file=c:\bitmaps\question.bmpESC\

ESC_33 ; 4 w tbox ; tcom1 ESC\

C H A P T E R 2 A I F T O O L K I T

86 Developer’s Guide

ESC_33 ; 4 w tbox ; tcom2 ESC\

ESC_33 ; 2 w tbox ESC\

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 87

Menus

You can use AiF escape sequences to create controls for Windows-style menus on the menu bar for
your application. To use menus, you must first create a set of commands to place in the menus you
create, see page 80 for details of commands.

Creating Menus

To create a new menu, use the following AiF escape sequence:

ESC_33 ; 10 ; {dis} w m-id ; title ; c-id1 ... ESC\

Where:

dis 1 = disabled.

2* = enabled.

m-id New menu id.

title Menu title.

c-id1 ... Command ids, or menu ids (see below) to be added to the menu. To add a
separator, skip a command id (i.e., 2 semicolons with nothing between).

You can use this AiF escape sequence to create hierarchical menus (that is, menus containing
menus), by including the name of a pre-defined menu as one of the command IDs.

Menu Example

To create a menu called fonts, containing the commands bold and italic, and the sub-menu size,
use the following AiF escape sequences:

ESC_33 ; 10 w size ; Font Sizes ; eight ; ten ; twelve ESC\

ESC_33 ; 10 w fonts ; Character Fonts ; bold ; italic ; size ESC\

The sub-menu size contains the commands eight, ten and twelve.

Displaying Menus

To place pre-defined menus in the menu bar, use the following AiF escape sequence:

ESC_33 ; 11 ; c-num w c-id1 ... menu-ids ESC\

Where:

c-num Number of command IDs to be inserted on help menu.

c-id1 ... Command IDs to be added to help menu.

menu-ids IDs of menus to be installed in menu bar.

The host menus will be inserted to the left of the Help menu, but left aligned (that is to the right of
all the inbuilt non-help menus).

You can also give command IDs to be added to the help menu, in a separate section.

C H A P T E R 2 A I F T O O L K I T

88 Developer’s Guide

Removing Menus

To remove menus from the menu bar, pass the control IDs of the menus to be inserted in the
menu bar, in the order you want them. All host menus that are not named will be removed from the
menu bar if already there.

So to remove all host menus, use this AiF escape sequence, without naming any menus.

Enabling/Disabling Menus

To enable/disable a whole menu, use the following AiF escape sequence:

ESC_33 ; 12 ; dis w menu-id ESC\

Where:

dis 1 = disabled, 2* = enabled.

menu-id Menu id.

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 89

Changing Fonts

To change the font of characters displayed on your terminal, use the following AiF escape sequence:

ESC_93 {; size} w {name} ESC\

Where:

size New font size. * = current font size.

name Name of font. * = current font.

For example, to switch display font to Letter Gothic 18 point, use the following AiF escape
sequence:

ESC_93 ; 18 w Letter Gothic ESC\

Windows automatically selects the closest available match to the font you select.

This sequence is equivalent to using the Font... option of the Configure menu. If you change the
font size, this automatically switches Maintain Aspect Ratio on. If you have set Snap To Frame or,
Best Fit, changing the font size has no effect.

C H A P T E R 2 A I F T O O L K I T

90 Developer’s Guide

Invoking Windows Help

To invoke Windows Help, use the following AiF escape sequence:

ESC_94 ; 1 ; invoke w file ; context ESC\

Where:

invoke Specifies how to invoke Windows Help:

1*= HELP_CONTEXT

2 = HELP_CONTEXTPOPUP

3 = HELP_CONTENTS

4 = HELP_KEY

5 = HELP_PARTIALKEY

6 = HELP_COMMAND

7 = HELP_HELPONHELP

8 = HELP_QUIT

file Help file name. If missing, the HostAccess help file is used.

context Either a help context number (if invoke = 1 or 2), a help keyword or partial
keyword (if invoke =4 or 5), a help macro string (if invoke =6), or is ignored.

See the Microsoft Windows Help Authoring Guide documentation for details of Winhelp() and the

HELP_... functions.

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 91

Timed Events

To return a notification after a set time period has elapsed, use the following AiF escape sequence:

ESC_95 ; delay ; t-event ; a-event w ESC\

Where:

delay The number of seconds to wait before triggering.

t-event 1 = turn timed events off.

2 = turn on one timed event.

3 = turn on regular timed events (every time interval).

a-event 1 = turn activation events off.

2 = turn activation events on.

The return notification takes the following format:

<STX > Type <CR> 1 <CR>

Where

Type A string:

“TI” to signal a timed event.

“AC” to signal that HostAccess has been made active (gained focus).

C H A P T E R 2 A I F T O O L K I T

92 Developer’s Guide

ActiveX (COM) Integration

An ActiveX object is a component program object that can be re-used by many application
programs within a computer or among computers in a network. The technology for creating
ActiveX objects is part of Microsoft's overall ActiveX set of technologies, chief of which is the
Component Object Model (COM). ActiveX objects can be downloaded as small programs or
applets from Web pages, but they can also be used for any commonly needed task by an application
program in the latest Windows and Macintosh environments. In general, ActiveX objects replace
the earlier OCX’s (Object linking and embedding custom objects). An ActiveX object is roughly
equivalent in concept and implementation to the Java applet.

An ActiveX object can be created in any programming language that recognizes Microsoft's
Component Object Model (COM). An ActiveX object is a component or self-contained program
package that can be created and reused by many applications in the same computer or in a
distributed network. The distributed support for COM is called the Distributed Component Object
Model (DCOM). In implementation, an ActiveX object is a Dynamic Link Library (DLL) module.
An ActiveX object runs in what is known as a container, an application program that uses the
Component Object Model program interfaces. This reusable component approach to application
development reduces development time and improves program capability and quality.

HostAccess will access the ActiveX objects in the same way as it has previously done for its
standard internal controls. The host programmer prints a unique escape code that is interpreted by
HostAccess and an action is performed. These objects can be positioned on the HostAccess
emulation screen at a given X & Y co-ordinate and scaled to a size of a number of characters by
number of rows. The escape sequences used to load and manipulate these objects follow the same
standards as previous escape cod

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 93

Creating ActiveX (COM) Objects/Controls

There are 2 types of objects that can be ‘created’, objects that can be positioned on the HostAccess
screen and those that cannot. The first tend to be GUI controls written for Visual Basic like edit
controls, radio buttons, list boxes, browser objects and the later are automation objects that provide
a programming interface to control applications like MS Word and MS Excel.

To create an object, use the following AiF escape sequence:

ESC_201 ; object ; y ; x ; h ; wid ; status w control-id ; prog-id ; caption ESC\

Where:

object Type of Object:

0 = Automation Object

1= GUI Object

y y co-ordinate of top of the Object.

x x co-ordinate of left of the Object.

h Height of the Object, in rows.

wid Width of the Object, in columns.

status Status of Object creation:

1 = Return a status response

2* = Do not return a status response

control-id Control ID - must be unique, and may not be “root”.

prog-id Fully qualified class name e.g. Pixel.Button

caption Text value that the object may use. Typically used with
label and edit controls.

The following response will be sent to the host application, if the status parameter was set to 2:

<STX> value <CR>

Where:

<STX> Is the start of text character (ASCII decimal value 002).

value Is the actual value returned. If an object is created, the
value returned is 1. If an object fails to be created, the
return value will be 0.

<CR> Is a carriage return (ASCII decimal value 013).

Registering and Using ActiveX (COM) Objects/Controls

Make sure all ActiveX controls (*.ocx) exist and are registered on the client machine.

C H A P T E R 2 A I F T O O L K I T

94 Developer’s Guide

To begin registration of an ActiveX control, open a command prompt.

NOTE: If you are on a Windows 7 or higher operating system AND UAC is enabled,
start the command prompt using "Run as Administrator" to use regsvr32.exe correctly.

To register the ActiveX control on a 32-bit (x86) system,

¶ move <name of control>.ocx to C:\ Windows\ system32
OR

¶ move <name of control>.ocx to C:\ WINNT\ system32

¶ then call <exe path>\ regsvr32.exe <ocx path>\ <name of control>.ocx from the
command prompt

To register the ActiveX control on a 64-bit (x64) system,

¶ move <name of control>.ocx to C:\ Windows\ sysWOW64
OR

¶ move <name of control>.ocx to C:\ WINNT\ sysWOW64

¶ then call <exe path>\ regsvr32.exe <ocx path>\ <name of control>.ocx from the
command prompt.

NOTE: <exe or ocx paths> are only required if either differ from C:\ Windows (or WINNT)\ system32 or C:\ Windows

(or WINNT) \ sysWOW64, otherwise the <exe path>\ or <ocx path>\ may be omitted. Also replace <name of
control> with the actual name of the OCX control in the instructions above.

Chart control Example:

To create a Chart Control on the HostAccess screen with the unique name of CHART at a position
of Row 5 Column 10 with a depth of 12 rows and width of 40 characters use the following AiF
sequence:

ESC _ 201 ; 1 ; 5 ; 10 ; 12 ; 40 w CHART ; MSChart20Lib.MSChart.2 ESC \

Grid control Example:

To create a Grid Control on the HostAccess screen with the unique name of GRID at a position of
Row 5 Column 10 with a depth of 12 rows and width of 40 characters use the following AiF
sequence:

ESC _ 201 ; 1 ; 5 ; 10 ; 12 ; 40 w GRID ; MSFlexGridLib.MSFlexGrid.1 ESC \

NOTE: There are known licensing issues with the above ActiveX controls. If either control does NOT appear in their
respective demos or macro samples when running HOSTACCESS.DEMO from the TCL or from your PICK
code, please refer to Microsoft’s documentation for possible licensing issues for these controls at
http://support.microsoft.com/default.aspx?scid=kb;en-us;318597.

Visit our Host Access forums at http://forums.roguewave.com to view and share what other users’
are doing with macro and PICK samples.

Miscellaneous Example:

To create a word document object outside the HostAccess Screen use the following AiF sequence:

ESC _ 201 ; 0 w WORD ; Word.Document.8 ESC \

http://support.microsoft.com/default.aspx?scid=kb;en-us;318597
http://forums.roguewave.com/

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 95

Executing Methods

To call a method of an object you will need to know what parameters to supply (if any). Any
number of parameters will be accepted by HostAccess, as it does not validate your syntax at
execution time. You can also pass additional objects into methods using the relevant Control ID.
E.g. If a method required an image object as a parameter you can send it the Control ID of the
image object, which has previously been created. HostAccess will convert this object into the
correct “type” before executing the method.

To execute a method, use the following AiF escape sequence:

ESC_204 w control-id ; method ; param1 ; param2 ; param(n) ESC\

Where:

control-id Is the Control ID of the object.

method Is a function that is associated with the object. This can
sometimes be called a “member function”

param1-n These are optional parameters that are associated with
the method.

The following response will be sent to the host application:

<STX> value <CR>

Where:

<STX> Is the start of text character (ASCII decimal value 002).

value Is the actual value returned. If an object is returned by
the method then HostAccess will convert this to a
Control ID. You can then use the control as though it
was an automation object. The Control ID assigned by
HostAccess is based on the control ID that returns the
object. If the control ID is “CHART” and you call a
method which returns another object it will be called
“CHART_0” or “CHART_1” if CHART_0 has already
been used.

<CR> Is a carriage return (ASCII decimal value 013).

Example:

To increase the month of the CALENDAR object using the “NextMonth” method use the
following escape sequence:

ESC _ 204 w CALENDAR ; NextMonth ; -1 ESC \

C H A P T E R 2 A I F T O O L K I T

96 Developer’s Guide

Getting a Property Value

To get a property value, use the following AiF escape sequence:

ESC_202 w control-id ; property ; param1 ; param2 ; param(n) ESC\

Where:

control-id Is the Control ID of the object.

Property This is the property associated with the object.

param1-n Any additional parameters that are used to utilize the
property.

The Get Property Value response will be:

<STX> value <CR>

Where:

<STX> Is the start of text character (ASCII decimal value 002).

value Is the actual value returned. If an object is returned by
the method then HostAccess will convert this to a
Control ID. You can then use the control as though it
was an automation object. The control ID assigned by
HostAccess is based on the control ID that returns the
object. If the control ID is “CHART” and you call a
method which returns another object it will be called
“CHART_0” or “CHART_1” if CHART_0 has already
been used.

<CR> Is a carriage return (ASCII decimal value 013).

Example:

To return the BackDrop Fill Style of the CHART object use the following AiF sequence:

ESC _ 202 w CHART ; BackDrop ESC \

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 97

Setting a Property Value

To set a property value, use the following AiF escape sequence:

ESC_203 w control-id ; property ; param1 ; param2 ; param(n) ; value ESC\

Where:

control-id Is the Control ID of the object.

Property This is the property associated with the object

param1-n Any additional parameters that are used to set the
property.

value Value to set.

There may be multiple parameters so the last value in the escape code will be taken as the value.

Example:

To set the “ChartType” property of the CHART object to Type 6 use the following AiF sequence.

ESC _ 203 w CHART ; ChartType ; 6 ESC \

C H A P T E R 2 A I F T O O L K I T

98 Developer’s Guide

Enabling Events for an Object/Control

One of the problems with using external objects is that they have been written for use with PC
applications were the Event handling is controlled locally on the PC. What happens is that objects
are written to support lots of different event types like “mouseover”, “Got Focus”, “Lost Focus”,
“mouseup”. In a Visual Basic application these events are just discarded with no noticeable
performance loss. When you then move this concept to the world of HostAccess you will see the
problem when the events are transmitted back to the Host. Imagine moving the mouse over a
button and the control sending a few hundred events over the network or down a serial cable to the
host. What about the poor host, the volume alone would probably crash the input buffer. All that
said we have resolved these issues by implementing an additional stage into the event handling to
disregard and stop transmitting all the unwanted events.

To enable/disable events of an object, use the following AiF escape sequence:

ESC_203 w control-id ; type ; event ESC\

Where:

control-id Is the Control ID of the object.

type “ENABLEEVENT” or “DISABLEEVENT”.

event The event to be enabled/disabled.

Once the object event has been enabled you must enable HostAccess ActiveX event reporting.

Example:

To enable a Click event for the BUT1 object use the following AiF sequences:

ESC _ 203 w BUT1 ; ENABLEEVENT ; Click ESC \

ESC _ 15 ; 3 ; 16 w BUT1 ESC \

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 99

ActiveX Event Reporting

To enable/disable HostAccess ActiveX Event reporting, use the following AiF escape sequence:

ESC _ 15 {; enable} ; 16 w control-id ESC \

Where:

enable 1 = Disable events (discards outstanding stacked events).

2*= Enable events.

3 = Stack events (recommended for ActiveX use).

control-id Is the Control ID of the object or the Control Group ID.

When an ActiveX event is reported to the host, information about that event is sent in the following
format:

<STX> WC <CR> id , 16 , event, noofparams, params é <CR>

Where:

<STX> Is the start of text character (ASCII decimal value 002).

WC Literal characters.

<CR> Is a carriage return (ASCII decimal value 013).

id Control ID of the control associated with the event.

16 Literal characters.

event The event name i.e. Click.

noofparams The number of parameters that are supplied with the
event.

params The parameters that follow.

C H A P T E R 2 A I F T O O L K I T

100 Developer’s Guide

Destroying an ActiveX Object/Control

To destroy a named control, string list or control group, use the following AiF escape sequence:

ESC_10 {; delete} w control-id ESC\

Where:

delete Use only if ID is that of a control group:

1 = do not delete controls inside group.

2* = delete all controls in group.

control-id Control ID, string list ID or control group ID.

Destroying a control will flush it from HostAccess memory. The control is immediately removed
from the screen. If the specified control currently has focus, or would have focus if the application
were the active top level Window, then focus is shifted to the root.

Deleting a control group will by default delete all the controls in that group. To retain the controls,
set the delete parameter to 1.

A I F T O O L K I T C H A P T E R 2

Developer’s Guide 101

Common Problems

Some common problems you may encounter using the Windows AiF features are described below
with suggested solutions.

Sculpting

Sculpted Boxes/Lines do not appear

Check that you have turned the sculpture mode on.

Sculpted Boxes/Lines still appear after application ends

Check you have turned the sculpture mode off.

Control Management

Cannot Change Control Colour

Check that you have the correct control name.
Check that you change the colour after displaying the control.

No Response From Clicking a Control

Check that the event has been set up correctly with the correct name.
Check that the control you are using has a response - some do not have an attached event.
Check that the mouse is working correctly.
Check that the correct event number has been enabled for the control.

Secondary Windows

Cannot switch from a secondary window

Check that the window is modeless.

Buttons

No image appears

Check that the image file exists, and is of the correct type. See Appendix A, Describing Images for
details.

Toolbars and Toolboxes

Toolbars or Toolboxes do not appear

Check that you have specifically set the toolbox or toolbar to show.

C H A P T E R 2 A I F T O O L K I T

102 Developer’s Guide

Fonts

Control¡s font is different to the specified font.

When you create a control containing text (for example, an edit box), and you
specify the font (for example, Helvetica 8), this font may be changed in your
display. This is because Windows substitutes certain font, as specified in the

[fontsubstitutes] section of the user¡s WIN.INI file. For example, Arial may be
substituted for Helvetica.

To alter this, alter the font substitution - see your Windows programming guide
for details.

Note: If a font is not defined on the user¡s PC, Windows always tries to match to
the closest available font.

Controls and Macros

General ActiveX controls such as MSChart, MSFlexGrid or Calendar (MSCAL)
do not ship with Host Access. As a result some macros, i.e. AXFIG1.mcr
through AXFIG4.mcr, or demos may not perform correctly without these
controls. Install and register these controls on the client machine prior to
running the macros or demos.

Please refer to Chapter 2’s section titled, Registering and Using ActiveX
(COM) Objects/Controls , for a detailed solution.

Developer’s Guide 103

Chapter

3
AiF Utilities

The following sections describe how you can use the Applications interface Facility (AiF) to
exploit the power of library routines and screen manipulation features. HostAccess provides a
sophisticated, application driven workstation. While continuing to support existing applications
unchanged through industry standard terminal emulations, you can also introduce a PC style user
interface to host applications with colour, windows, pop-down menus and many more features.

How AiF Sequences Work

The AiF supports standard ANSI X3.64 compliant ESCape sequences that may be used by host
applications to drive the AiF features.

Any host process that can send output to a terminal can also make use of AiF by sending special
AiF sequences to HostAccess running on a PC. HostAccess intercepts these sequences and takes
the appropriate action (for example, saving a screen image).

Software developers normally define these AiF sequences so that they can be referenced globally as
variables by their applications code (either at run-time or compile time).

Types of Sequence

HostAccess expects the AiF sequences to conform to a certain format. Every screen AiF sequence
starts with the ESCape character (ASCII decimal value 27). The next two characters in the sequence
depend on the type of feature required.

The semi-colon character is used as a delimiter to separate parameters in a sequence.

Note: a common programming error when using AiF sequences is to forget/misplace the
delimiters.

C H A P T E R 3 A I F U T I L I T I E S

104 Developer’s Guide

Screen Manipulation Sequences

This type of sequence is called an ANSI CSI (Control Sequence Introducer). Generally, these
format sequences usually denote that the sequence is being used by HostAccess for colour, box or
line drawing, saving/restoring screen images, etc.

This type of sequence requires a terminating character, telling the AiF what facility is required -
these are described for each sequence.

Format: left square bracket and equals sign ([=), terminated by a lower-case character.

So an entire sequence in this format can be described as:

ESC [= A1 ; A2 ; ... An f

Where:

ESC Is an escape character (decimal value 27).

A1 ... An Are parameters (typically colour attribute setting, column/row co-ordinate.

f Is a lower case terminating character, such as 'x' for box drawing.

Library Sequences

This type of sequence is called an ANSI APC (Application Program Command). Generally, this
format denotes that the sequence is being used by the AiF to interface into main DOS library
routines, such as Pop-Down Menus.

Format: Underscore ‘_’, followed by a capital letter terminated by ESC \ . So an entire sequence in
this format can be described as:

ESC _ B1 ; B2 ; ... Bn F data string ESC \

Where:

ESC Is an escape character (Decimal value 27).

B1 ... Bn Are parameters. These parameters depends on the AiF sequence.

F Is an upper-case letter (such as ‘X’).

data string Is optional data for the AiF, such as box heading text.

ESC\ Is the escape character (decimal value 27), followed by a backslash character ‘\’

Note: spaces are shown between characters only for the purposes of clarity - these spaces should
not be included within the sequence itself.

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 105

Sequences Summary

The following screen AiF sequences are supported:

Tailoring the environment See from page 110.

Set colour. ESC [= A1 ; A2 ; A3 ;....An m

Switch ANSI colour mode ON. ESC [= 7 h

Switch ANSI colour mode OFF. ESC [= 7 l

Detect colour/mono monitor. ESC [= 6 n

Detect blinking status. ESC [= 7 n

Open window. ESC [= Y1 ; X1 ; Y2 ; X2 ; WT ; A1 ; ... ; An u

Close window ESC [= F v

Window heading. ESC _ X1 ; A1 ; ... ; An W ...title... ESC \

Window footing. ESC _ X1 ; A1 ; ... ; An U ...title... ESC \

Load exit keys. ESC _ Z exit_keys ESC \

Reset pop-down menus. ESC [= 2 ; SN l

Load pop-down menus. ESC _ N1 ; SN M H1 ; E1 ; E2 ; .. ; En ESC \

Activate pop-down menu. ESC [= 22 ; SN ; m ; e ; Y1 h

Close current pop-down menu. ESC [= 22 l

Reset cascading menus. ESC [= 2 ; SN l

Load cascading menus. ESC _ N1 ; SN M H1 ; E1 ; E2 TC CN ; .. ; En ESC \

Activate cascading menu. ESC [= 22 ; SN ; m ; e ; Y1 h

Close cascading menus. ESC [= 22 l

Re-set selection boxes. ESC [= 24 ; SN l

Load selection boxes. ESC _ SN ; Y1 ; X1 ; DT ; BT ; MT ; MW S H1 ; E1 ; E2 ..
En ESC \

Activate selection boxes. ESC [= 23 ; SN ; En h

Activate selection boxes in
previously opened window.

ESC [= 24 ; SN ; En h

Close selection boxes. ESC [= 23 l

Activate Line input. ESC [= 25 ; FL ; VL ; SM h

C H A P T E R 3 A I F U T I L I T I E S

106 Developer’s Guide

Tailoring the environment See from page 110.

Activate Box input. ESC _ Y1 ; X1 ; FL ; BS ; BT ; VL ; SM J text ; title ESC \

Invoke window editor. ESC [= 26 h

Load exit keys. ESC_Z exit-keys ESC \

Push environment. ESC [= 99 p

Pop environment. ESC [= 99 q

Display Optimisation See from page 148.

Save SLOT number N. ESC [= N p

Restore SLOT N to screen. ESC [= N q

Push screen image onto SLOT
STACK.

ESC [= p

Pop screen image from SLOT
Stack.

ESC [= q

Write to FORM number Fn, form
version number Fv

ESC [= Fn ; Fv ;1 s TEXT ESC [= s

Display from FORM number Fn ESC [= Fn r

Change FORM file name. ESC _ F DOS_form_file_name ESC \

Clear currently active FORM file. ESC [= s

Request FORM file version
number

ESC [= Fn ; 1 r

Freeze ON. ESC [= 1 h

Freeze OFF. ESC [= 1 l

Turn host echo on. ESC [= 13 h

Turn host echo off. ESC [= 13 l

Applications enhancement See page 157.

Draw box. ESC [= Y1 ; X1 ; Y2 ; X2 ; BT ; A1 ; ... ; An x

Draw Line. ESC [= Y1 ; X1 ; Y2 ; X2 ; LT ; A1 ; ... ; An z

Display message. ESC [= C1 ; A1 ; ... ; An w message CR

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 107

Applications enhancement See page 157.

Clear message line. ESC [= w CR

Force system message line display. ESC [= 11 h

Force HostAccess status line
display.

ESC [= 11 l

Set mode specified by n. ESC [= 3 ; n h

Reset to user configured screen
mode.

ESC [= 3 l

Selects block cursor. ESC [= 4 h

Selects line cursor. ESC [= 4 l

Cursor ON. ESC [= 10 h

Cursor OFF. ESC [= 10 l

Set screen fill character to character
with ASCII value nnn.

ESC [= 12 ; nnn h

Reset fill character to space. ESC [= 12 l

Switch to PC font table specified by
n.

ESC [= 9 ; n h

Reset default font table. ESC [= 9 l

Suppress screen output outside
current window.

ESC [= 5 h

Disable output suppression. ESC [= 5 l

Centre text in window. ESC _ Y1 C text ESC \

Macros. ESC_ sscripttext ESC \

Keyboard control features See from page 170.

Program Function key n. ESC _ n K Key data ESC \

Toggle Caps Lock ON. ESC [= 28 h

Toggle Caps Lock OFF. ESC [= 28 l

Switch scancode keys ON. ESC [= 6 ; p h

Switch scancode keys OFF. ESC [= 6 l

Switch typeahead ON. ESC [= 20 h

C H A P T E R 3 A I F U T I L I T I E S

108 Developer’s Guide

Switch typeahead OFF. ESC [= 20 l

Keyboard control features See from page 170.

Enable command stack. ESC [= 21 h

Disable command stack. ESC [= 21 l

Detect if mouse installed. ESC [= 8 n

Switch mouse monitoring ON. ESC [= 27 ; n h

Switch mouse monitoring OFF. ESC [= 27 l

DOS Integration See from page 182.

Invoke DOS gateway. ESC _ sc ; 0 D Cmd1 ; … ; Cmdn % keys ; Cmdnn ESC \

Print screen. ESC [= 0 I

Switch OFF direct (slave) printing. ESC [= 4 I

Switch ON direct (slave) printing. ESC [= 5 I

Change current print device. ESC _ L device.name ESC \

Erase single DOS file. ESC _ E filename ESC \

Request working DOS run
directory.

ESC [= 9 n

Verify DOS path. ESC _ G path ESC \

Windows Integration See from page 194.

Displays an image. IMAGE /I filename {/T title} {/Z zoom} {/F}

Closes an image application. ESC _ x AP ESC \

Control Window state. ESC _ ST c AP ESC \

Start any Windows program on the
desktop.

ESC _ ST e PN ESC \

Detect if Windows application is
running.

ESC _ a AP ESC \

Send keys in DOS keyboard stacker
format to specified Windows
application

ESC _ k AP % keys ESC \

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 109

Dynamic Data Exchange See from page 206.

Close a DDE link already
established with Initiate DDE
.sequence

ESC _9d SN;TP ESC \

Send commands to server
application

ESC _ 2 ; TM d SN ; TP ; MA ESC \

Open a DDE channel with a
server

ESC _ 1d SN;TP ESC \

Pass data to server ESC _ 3; TM d SN;TP;IT;ST ESC \

Retrieve data from server ESC _ 4; TM d SN;TP;IT ESC \

Miscellaneous Facilities See from page 200.

Close HostAccess from host. ESC _ X ESC \

Request serial number. ESC [= 1 c

Returns information about
HostAccess and its run-time
environment.

ESC [= 10 n

Request Printer Information ESC _ 84 w ESC \

Request the PC Date and/or Time ESC _ 84 w ESC \

Request the Computer Name
and/or User Name

ESC _ 84 w ESC \

Request an Environment Variable
value

ESC _ 84 w ESC \

Send screen to host system. ESC [= 2 I, ESC [= 2 ; n I

Change emulation ESC [= n {

File transfer ESC_mode;hostdriven1;append;0;protocol;ist direction local
;remote esc\

C H A P T E R 3 A I F U T I L I T I E S

110 Developer’s Guide

Tailoring the Environment

A user of an application should easily and intuitively understand how it works and interacts.
Presentation (the user interface) is the most important part of an application’s acceptability. The AiF
enables developers to design sophisticated and friendly application user interfaces without the need
for complicated coding.

Interface aspects that can make an immediate impact on users are:

Â Colour, see below.

Â Windows, see page 114.

Â Menus, see page 117.

Â Selection boxes, see page 132.

Â GUI: See Chapter 2, AiF TOOLKiT for further details.

Using Colours

HostAccess supports ANSI standard colour sequences in most of its Terminal Emulations.

Standard terminal video attributes are mapped into colour by default (such as bold into red on
black), enabling existing applications to use colour without modification.

We have also defined a series of ANSI compatible colour sequences so you can use any PC colour
from within any application regardless of the terminal type being emulated by HostAccess.

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 111

AiF Sequence - Using Colours

ESC [= A1 ; ... ; An m

Where A1 ... An can have the following values:

0 All attributes off (colours are reset to light
Gray text on Black background).

1 Intense on

2 Intense off

22 Intense off

7 Reverse on

27 Reverse off

30 foreground to Black 40 background to Black

31 foreground to Red 41 background to Red

32 foreground to Green 42 background to Green

33 foreground to Brown 43 background to Brown

34 foreground to Blue 44 background to Blue

35 foreground to Magenta 45 background to Magenta

36 foreground to Cyan 46 background to Cyan

37 foreground to Light Gray 47 background to Light Gray

The 16 PC foreground colours are achieved by using the 8 colours above with or without the
intense bit set.

The Intense Bit Set

Colour Attribute Value Colour Value Attribute

Black 30 Dark Gray 30;1

Red 31 Light Red 31;1

Green 32 Light Green 32;1

Brown 33 Yellow 33;1

Blue 34 Light Blue 34;1

Magenta 35 Light Magenta 35;1

Cyan 36 Light Cyan 36;1

Light Gray 37 White 37;1

To set the screen colours back to the current HostAccess default colours use the AiF
sequence:

ESC [0 m

This restores the colours to the state they were in when HostAccess was loaded or to the colours set
by the last ESC [=90..m sequence (described immediately below).

C H A P T E R 3 A I F U T I L I T I E S

112 Developer’s Guide

Special values may be assigned to the first attribute in the colour sequence to change the normal text
colour and the default colour settings for application driven AiF Menus.

The following attribute values apply:

A1 = 90 Changes the default normal colour, used for clear screens, clear to end of
line, etc.

A1 = 91 Changes the Window and Box Shadow colours.

A1 = 97 Changes the main Menu colour.

A1 = 98 Changes the selection character colour in Menus.

A1 = 99 Changes the Menu highlight 'bar' colour.

(Remember, if the first attribute is not one of the above values, the current colour attributes will be
changed.)

Resetting the colour parameter to the default setting

To reset the appropriate parameter to the default setting, use one of the following sequences:

ESC [= 90 m

ESC [= 91 m

ESC [= 97 m

ESC [= 98 m

ESC [= 99 m

Using Colours Example - DOS AiF

To reset the user's default foreground and background screen colours to white text on a Blue
background use the following command sequence:

ESC [= 90;0;1;37;44 m

and then clear the screen.

Note: attribute parameters change only one component each, e.g. 'ESC [= 37 m' changes the
foreground colour to white but does not affect the background colour, intensity.

 If colour is simply used to highlight (say) an error message, and the you do not want to reset the
current colour attributes, you can simply open a window to display the message. Within this window
the colours may be configured without affecting the current screen's attributes. Once the user has
read the message display in the window, the application program simply closes the window.

Switching ANSI Colour Mode On/Off

Use this AiF sequence to tell HostAccess to support ANSI standard colour sequences in all of its
Terminal Emulations.

Normally attributes such as flashing, intense and reverse are mapped through HostAccess's internal
tables into special colours so as to give monochrome applications some immediate colour (without
the need to change these applications). In ANSI Colour Mode, video attributes are applied literally.

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 113

Use the following sequence:

ESC [= 7 h Switches ANSI Colour Mode on.

ESC [= 7 l Switches ANSI Colour Mode off.

C H A P T E R 3 A I F U T I L I T I E S

114 Developer’s Guide

Using Windows

AiF's programmable windows is one of HostAccess's most powerful features. Properly used it can
liberate applications from the restrictions of only being able to display information on one screen at
a time.

AiF windows allow applications to open up a 'virtual' screen of any size anywhere on the current
screen. All output sent by the application to the PC's screen will be displayed within this window.
Cursor addressing is now relative to the top left-hand corner of this window. If the application
clears a screen, changes a video attribute, or the fore/background colours, etc., these will only affect
the area of the screen that is inside a window.

Any number of windows may be opened and effectively layered on top of each other. Closing a
window reactivates the previously opened window or the original screen, if no other windows have
been opened.

It is useful, in some circumstances, to be able to close a window and leave its contents behind on
the screen - this is one of the many options available with windows. Other options include
Headings, Footings, borders and other effects.

Windows AiF Sequence

ESC [= Y1 ; X1 ; Y2 ; X2 ; WT ; A1 ; ... ; An u

Where:

Y1 Top left-hand row.

X1 Top left-hand column.

Y2 Bottom right-hand row.

X2 Bottom right-hand column.

WT Describes the window type:

0 No border.

1 Single line border.

2 Double line border.

3 Single line at top and bottom, double at sides.

4 Double line at top and bottom, single at sides.

32 Do not clear screen behind window.

64 Shadow window.

128 Explode window.

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 115

A1 .. An Optional parameters to set the window colour. If not present, the current
colour Attribute is used.

U Is the literal u.

To open a window starting at the top left-hand corner of the screen, set X1 and Y1 to 1.

To centre the window within the current screen, set both X1 and Y1 to 0 (zero). In this case, the
window size is determined by the absolute values of X2 and Y2.

To centre the window in the "zeroed" plane, set either only X1 or Y1 to 0 (zero) , i.e. either
horizontally or vertically.

Note: the last three values for WT are additive, e.g. a single line bordered window that is exploded
and shadowed has a WT value of 193 (1 + 64 + 128 = 193).

Closing a Window

To close the window use the following sequence:

ESC [= F v

Where:

F = 0 If F is zero or absent then the screen behind the window is restored.

F = 1 To leave window contents on screen.

Example

The application needs to display an important message, and ensure that the user has noticed it by
waiting for acknowledgement. Conventional applications reserve one line for messages or try to
attract the user's attention by putting the message in reverse video and possibly in some sort of box.
However, the user might miss the message, and the message is displayed at the cost and time of
having to redisplay the whole of the underlying screen. Use AiF to avoid these problems. To output
a message ERROR! in White text in a Red window and then wait for user input, use the following
AiF escape sequence:

ESC[=16;36;18;44;1;0;1;37;41u

ESC[2;2H

ERROR!

input dummy

ESC[=v

C H A P T E R 3 A I F U T I L I T I E S

116 Developer’s Guide

Window Headings And Footings

A heading and/or footing may only be displayed within the border of a window. If the window has
been opened without a border, then headings and footings are ignored.

To put the title in the top of the window border, use the following sequence:

ESC _ X1 ; A1 ; ... ; An WTitle.... ESC \

To put the title in the bottom of the window border, use the following sequence:

ESC _ X1 ; A1 ; ... ; An UTitle.... ESC \

Where:

X1 Is the starting column of title. If set to 0, or absent, the text is centred.

A1 ; ... ; An Are the colour attributes.

W Is the literal ‘W’ .

U Is the literal ‘U’.

Title Is the text for the title.

ESC\ Is the terminator.

If the title text is wider than the window border it will be ignored. If no colour attributes are
specified then the current window attributes are used.

Footings are treated in the same way as headings with regard to positioning and attributes.

To clear a heading or footing that has been previously placed on a window simply send the heading
or footing sequence as appropriate, with the "Title" set to null.

Example

Use the following sequences to open a window with co-ordinates 8,30 and 12,50 in Yellow text on a
Blue background with a footing in White text on Red containing the text 'Help'. The window is to
be exploded, shadowed and with a border.

ESC [= 8 ; 30 ; 12 ; 50 ; 196 ; 0 ; 44 ; 33 ; lu

ESC_0 ; 37 ; 1 ; 41 UHelp ESC \

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 117

Using AiF menus

There are three AiF sequences that control the use of AiF Menus from within an application.

One sequence enables an application to load Menus into the PC memory in readiness for activation by
the application using a second AiF sequence.

Once a menu has been activated, HostAccess does all the work in processing the user selection and
returns the user's choice to the host application. The application can then translate this choice into
the required action and process the user's choice as it would normally do. Once an application has
received the user's menu choice, it is normal to "close" the menu so that the underlying screen can
be updated by the application, if required. Each AiF menu type has its own close menu sequence.

A separate AiF sequence is provided to clear specified menus from HostAccess's memory.

The following areas are covered in this section:

Â AiF menu types, see below.

Â Menu options, see page 118.

Â Menu sets, see page 118.

Â Colour configuring menus, see page 119.

Â Configuring selection characters and separators, see page 120.

Â Menu - Exit keys, see page 120.

Â Pop-down menus, see page 122.

Â Cascading pop-down menus, 127.

AiF Menu Types

Two basic types of menus are supported by AiF - these are pop-down menus and selection boxes.

Pop-down menus work on the principle of a menu bar (usually across .the top of the screen) from
which lists of menu elements pop-down as the user moves left or right between menu headings on
the bar. Any element within a pop-down menu may cascade into another pop-down menu.

Selection boxes (pop-up menus) work on the principle of popping up a single list of selections
(anywhere on the screen) and allowing the user to move up and down this list to make a choice. To
implement the simplest form of AiF Pop-Down menus, see Pop-Down Menus on page 122.

C H A P T E R 3 A I F U T I L I T I E S

118 Developer’s Guide

Menu Options

A variety of options is available for AiF menu types. The options include:

Menu Type Option Description

all To allow host applications to have access to more than one menu set at any time
by saving these into areas of PC memory (called menu slots) without the need to
reload each menu set.

all To colour configure every aspect of any menu.

all To specify each menu heading's and menu element's selection character for fast
single keystroke selection.

all To provide a variety of exit keys with which the user may choose to leave the
menu (e.g. Allowing f10 as a "help exit key" from a menu).

all To cater for user's typeahead within menu processing.

all To use a variety of menu styles, including Novell and separator lines within lists of
menu elements.

all To optionally leave the menus displayed on the screen after the user has made a
selection.

all To store menu loading sequences (together with headings and elements) on the
PC's disk in special AiF files called forms. This can be useful to speed up menu
loading - for more information, see FORMs on page 151.

pop-down To reposition the pop-down menu bar to any row on the screen.

selection
boxes

To run selection boxes (pop-up) menus within AiF windows.

The options that apply to all menu types are documented in the following sections. Menu type
specific options are then documented within each menu type in the appropriate Pop-Down menu
section.

Local processing of user's keyboard inputs may be controlled by host applications if they need a
typeahead facility. Please see Typeahead Mode on page 177 for more details.

Menu sets

Menu sets enable host applications to load more than one menu into the PC's memory at the same
time. Each menu set can be instantly activated by sending the appropriate AiF sequence to activate
the menu from a specified menu set.

Host applications need to specify the menu set required when they load EACH menu to the PC.
This menu set number is the 'SN' parameter (see Pop-Down Menus on page 122) on the load menu
sequences and will default to 1 if not specified.

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 119

Host applications need to ensure that they do not create menu set number conflicts, by loading two
or more menu sets into the same menu set number. In this case, the last loaded menu will be the
one used when the menu set number is selected.

HostAccess supports a maximum of 50 menu sets for EACH menu type.

The following overall limitations apply:

Menu Type Overall Limitations

Pop-down Maximum number of pop-down menu sets 50

 Maximum menus per menu set 100

 Maximum menu elements per menu 20

 Maximum menu elements per menu set 2,000

 Maximum number of menu elements across all pop-down
menu sets

100,000

Selection box
(pop-up)

Maximum number of selection box sets 50

 Maximum size (bytes) of all menu elements per menu set 32,000

 Assuming 30 bytes per menu element, approximate
maximum number of menu elements per menu set

1,066

 Approximate maximum number of menu elements across
all menu sets

53,300

These limitations are intended as guidelines only - host applications should never need to even
approach them. These limitations are also constrained by the available memory on the user's PC.

Colour Configuring Menus

An application using the AiF menus can change the default colours of its menus so that they can be
differentiated from other applications' menus. This is done through an extension to the AiF colours
sequence. By including a code in the range 97 to 99 as the first parameter, HostAccess applies the
subsequent parameter values as colour attributes for the AiF Menus.

These parameters have the following meaning:

97 Set the colours of the menu bar and pop-down/up menus.

98 Set the colours of the select character.

99 Set the colours of the highlighted selection bar.

C H A P T E R 3 A I F U T I L I T I E S

120 Developer’s Guide

Both foreground and background colours may be set with each of these parameters.

Note that a menu's colours are determined when the menus are loaded to the PC and are retained
with that menu. Menu colours cannot be dynamically changed by an application unless the menu is
reloaded after the menu colours have been changed.

Sending these AiF colour sequences with no colour parameters after the 97, 98 or 99 sets the
appropriate menu colours back to the system defaults.

This is described in more detail in Using Colours on page 110.

Configuring Selection Characters & Separators

As each menu's list of selections is loaded it is possible to tell HostAccess which character within
each element should be highlighted as the selection character.

Manoeuvring through menus by the user is extremely simple and fast and is consistent with the way
in which a user would move through HostAccess's own configuration menus .

The first character of each element will be used as the selection character by default, if a particular
character is not specified.

To designate any character within the menu element as the selection character, simply prefix the
desired character with an ampersand "&" . If an ampersand is required as part of the text of a menu
element then a double ampersand "&&" can be used to achieve this.

Selection characters may be specified in all menu types and in any menu element (including the
menu headings on the menu bar for Pop-Down menus).

If a null menu element is sent to HostAccess, it is treated as a separator. HostAccess displays a line
in the position of the null element. This is useful for breaking up groups of different menu choices
within a single menu list.

Menu - Exit Keys

All the AiF menus allow the user to exit the menu by pressing an exit key defined by the host
application. If these are not defined, a user can exit menus with a carriage return (to show
acceptance of the selected elements) or by pressing the ESCape key (to show non-selection of any
element and exit the menus completely). However, configurable exit keys give host applications
immense flexibility in the way in which they handle user selections within AiF menus.

For example, using defined exit keys, an application can provide a "help" hot-key (say Function Key
10) for any element within any menu. The user is able to press F10 to ask the application to display
help and then return instantly back into the menus to move or make a selection.

In addition, exit keys can be used by applications as "menu-wide" exits. For example, you could
define F2 to always process the same event, regardless of where the user is within the current menu
set. This allows fast manoeuvring and selections of actions from within menus.

Loading Application Specific Exit Keys

To load application specific exit keys as required, use the AiF sequence below:

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 121

ESC _ Z exit_keys ESC \

Where:

Z Is the capital letter Z - AiF code for exit keys.

exit_keys Are the exit keys that the application will recognise when returned from the AiF
menu. These are in the mnemonic format as described in DOS Keyboard Stacker
on page 184, e.g. as CR for carriage return, ES for ESCape, F1 for function key
1, etc.

User Response

When exit keys have been configured and loaded to HostAccess the user's response from a menu
will be returned to the host application in the following format:

<STX> exit_key <CR> menu_path <CR>

Where:

<STX> Is the special start of text character with ASCII decimal value 002.

exit_key Is the mnemonic for the exit key used to leave the menus. (as described
above). If you define single characters as exit keys, these are returned as 2
characters. For example, 'x’ is returned as a space followed by the letter x (i.e.
' X').

<CR> Is a carriage return character with ASCII decimal value 013.

menu_path Is the path in the form of menu element number(s) for the currently
highlighted menu element, delimited where appropriate by commas ",".

Note that the menu_path is always returned, regardless of which exit key was used. To reset the
exit keys to the default, set exit-key to null.

Examples

To load HostAccess with the exit keys required for Menus so that only Carriage Return, ESCape
and the Function Keys F1 and F2 are permitted, use the following AiF sequence:

ESC _Z F1 F2 ESC \

C H A P T E R 3 A I F U T I L I T I E S

122 Developer’s Guide

For example, the menu bar currently highlights the second element in the third pop-down menu. If
the user pressed Function Key 2 the following would be returned to the host application:

<STX> F2 <CR> 3,2 <CR>

Function Keys 1 to 10 mnemonics are F1..F9 with F0 for F10.

If the user pressed Enter the following would be returned to the host application:

<STX> CR <CR> 3,2 <CR>

Where the first CR is the literal letters "CR" (the other <CR>s are carriage returns, ASCII 013).

It is important to note that exiting either pop-down or selection boxes by pressing the ESCape key
will return a menu path of 0,0 or 0 respectively.

Terminal Echo - AiF Menus

You should turn terminal echo off before getting the response from AiF menus, so that this is not
displayed on the user's screen. You can use an AiF sequence to suppress host echoed output that
may be used instead of the host system's equivalent command. For more details, see Host Echo
On/Off on page 156. Terminal echo should be turned back on once the menu response has been
input.

Exit keys are common between the AiF Menus, Field Inputs and responses from Image displays - it
is the application's responsibility to maintain different exit keys between menus, field inputs and
Image displays, if required.

Pop-Down Menus

The AiF sequences needed to use pop-down menus are documented below in the logical order that
they would be used by a host application:

Clear pop-down menus. ESC [= 2 ; SN l

Load pop-down menus. ESC _ N1 ; SN M H1 ; E1 ; .. ; En ESC \

Activate pop-down menus. ESC [= 22 ; SN h

Close pop-down menus. ESC [= 22 l

Get user response to pop-down menus. See example on page 126.

All the sequences below are assumed to be for menus running in the default AiF menu set, i.e.
menu set 1 (one).

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 123

Clearing Menus

The following AiF sequence clears all application Pop-Down menus from the menu set SN in the
PC's memory:

ESC [= 2 ; SN l

Where SN is an integer between 1 to 50.

Loading Menus

To load a pop-down menu into HostAccess's memory on the PC, use the following sequence.

ESC _ N1 ; SN M H1 ; E1 ; .. ; En ESC \

Where:

N1 Is the menu number from 1 to 100. Only menu numbers 1 to 8 may be presented
from the menu bar. The first element in each of these menus will be taken as the
heading for that pop-down menu.

SN Is the menu set number from 1 to 50 (if not specified, default is one).

M Is the capital letter 'M' - AiF code for Menus.

H1 Is the first parameter and will be used as this Pop-Down Menu's heading in the
Menu Bar for menu numbers 1 to 8 only. For all other menus, this is the first menu
element.

E1..En Are the menu elements, up to 20 per Pop-Down Menu.

Note: Menu Heading and Element text strings should not contain semi-colons (interpreted as
element delimiters). Nor should they contain control characters, which will corrupt the menu text.

Using Pop-down Menus

Up to 100 menus may be loaded at any one time and each menu may contain up to 20 elements.
Each element may be a maximum of 78 characters long. This means that one menu set can be used
to present the user with up to 2,000 options.

Pop-down menus automatically justify menu headings across the menu bar. A maximum of 8 menu
headings may be presented on the menu bar. Menu headings are truncated if their total width
exceeds the current screen width.

Menus can be dynamically reconfigured to suit the application's requirements. At any point, the host
application may reload any menu simply by re-sending the AiF sequence for that particular menu. In
this way, menus can be modified dependent upon how the application interprets the user's
selections, actions, access security and so on.

C H A P T E R 3 A I F U T I L I T I E S

124 Developer’s Guide

Activating Pop-Down Menus

Use the following sequences to activate the Pop-Down Menus for user interaction:

ESC [= 22 ; SN h

Runs the menu set number SN starting at menu 1 element 1, unless the menu has been used before,
in which case it starts at the last selection.

You may optionally extend this sequence to specify that a specific element in a specific menu be
activated as the highlighted option when the menu set is invoked by the AiF sequence below:

ESC [= 22 ; SN ; m ; e ; Y1 h

Where:

SN Is the menu set number and is integer between 1 and 50.

m Is the menu number to be activated.

e Is the menu element number to be activated.

Y1 Is the row number on which the menu bar will be displayed (i.e. between 1 and the
current screen depth).

If a row number that equals the current screen depth (normally 24) is used then no pop-down
menus will be available from the menu bar.

This sequence will run the current menu set number SN starting at top-level menu 'm', element 'e'.

If the m;e parameters are set to 0;0 then HostAccess automatically activates the menu at the last
'remembered' menu position and redisplays the menu set through to the last selected option (within
cascades if appropriate). If these are set to "0;0" and this is the first time the menu is invoked, then
the option in menu 1, element 1 is highlighted when the menu is activated.

When the Pop-Down Menus are activated they appear over the existing screen. As the user moves
through the menus, HostAccess instantly refreshes the underlying screen.

Getting a Pop-Down Menu Response

AiF Pop-Down Menus allow a user to manoeuvre around the menus using the up, down, left and
right arrow keys. The Home and End keys will move the highlight bar to the top and bottom of a
Pop-Down Menu list. To select a menu option, the user presses the Enter key (or a valid exit key)
when the highlighted element is the required option. Pressing the ESCape key at any point allows
the user to exit from the Pop-Down Menus. To jump left or right between menus when on the
menu bar, press <Control> plus the letter of the menu’s highlighted selection character.

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 125

HostAccess¡s AiF handles all of the menu movement and underlying screen refreshes without any
intervention or additional code on the host system. Once a user selects an option, AiF will send the
selected Menu number and the Element number to the Host system. It is a simple matter for the
host application to interrogate this response and determine which option the user has chosen.

Pop-Down Menu Response

The Pop-Down Menu response from AiF takes the format:

<STX> exit_key <CR> Mn,En <CR>

Where:

<STX> Is a special Start of Text character (ASCII decimal value 002).This character indicates
the start of the menu response string and enables the application to discard any
typeahead input that could have been sent before the response string itself.

exit_key Is the Exit Key mnemonic in the AiF Keyboard Stacker format as defined on DOS
Keyboard Stacker (page 184) - also see notes on Loading Exit Keys (page 139) for the
key used by the user to exit from the menu.

<CR> Is a carriage return (ASCII decimal value 013).

Mn,En Is the menu path of the option selected as returned by HostAccess, Where:

 Mn Is the number of the option selected, from 1 to 100.

 En Is the menu element number of the option selected digit number, from 01 to 20.

Please refer to the examples below to see the logic required to obtain an AiF menu response.

If the user hits the ESCape key whilst in menus, the menu number and element number are both
returned with a value of zero.

Closing Pop-Down Menus

Use the following sequences to close the Pop-Down Menu:

ESC [= 22 l

closes the currently open Pop-Down Menu.

When the Pop-Down Menus are activated they appear over the existing screen. If another Pop-
Down Menu had previously been activated, it would have been closed by the activation of the
current menu. In other words, there is no concept of a "stack" of open Pop-Down Menus and
applications should only need to issue one close menu command.

C H A P T E R 3 A I F U T I L I T I E S

126 Developer’s Guide

A close menu sequence must be sent to HostAccess before the application can correctly update the
underlying screen. If the menu is not closed, the screen update may appear within the "window"
opened for the currently active Pop-Down Menu's element list.

Closing the pop-down menu does not remove it from the PC's memory. The same menu may be
reactivated at any time with the "activate menu" AiF sequence.

Pop-down menu example 1

To change the application menus to be Black letters on a Light gray background, with the select
character in Red and the selection bar with White characters on a Black background use the
following 'code':

menu_color = 'ESC[=97;0;'

select_color = 'ESC[=98;0;'

hilight_color = 'ESC[=99;0;'

send to PC menu_color '30;47m'

send to PC select_color '31;47m'

send to PC hilight_color '1;37;40m'

Pop-down menu example 2

The code below illustrates a schematic structure for loading and activating AiF's Pop-Down Menus
and for interrogating the AiF menu response. Developers can use this type of logic to provide their
applications with a common routine that handles all the AiF menus processing.

* assign variables for menu text and number of menus *

get menu_text

get nbr_of_menus

* clear any existing menus (from menu set 1) *

send to PC 'ESC[=2;1l'

* load the Pop -Down Menus using the following code (into the *

* default menu set number 1) *

menu_nbr = 1

loop

while men u_nbr <= nbr_of_menus

 this_menu = menu_nbr ; 1 'M' menu_text(menu_nbr)

 send to PC 'ESC_U this_menu 'ESC \ '

 menu_nbr = menu_nbr + 1

repeat

* activate the pop - down menu *

* and interrogate the AiF Menu response as follows *

quit = false

loop

 * get AiF menu response prefix *

 send to PC 'ESC[=22;1h'

 loop

 turn terminal echo off

 input menu_prefix

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 127

 until ASCII char 002 found in menu_prefix do

 repeat

* now get the user's menu selection *

 menu_nbr = 0

 input menu_coordinates

 extract menu_nbr (from menu_coordinates)

 extract menu_element_nbr (from menu_coordinates)

 if menu_nbr = '0' then

 quit = true

 end if

 turn terminal echo on

* now process the option selected ... *

* as any application would do so ... *

* Remember, you will need to close the menu if

* you need to update the screen ... *

until quit do repeat

This 'code' loops around the host system's input buffer waiting for a valid AiF start of menu
response character. This is necessary to discard any redundant input in the input buffer.

Once this is found, the menu option selected may be easily determined by extracting the menu
number and the element number from the next input. If the user has hit the ESCape key this is
detected (menu_nbr = 0) and the process exits the loop. Otherwise the menu option chosen is
processed normally, as any application would do.

Notes: You should load pop-down menus into (and cleared from) specific menu slots, to avoid
clashes with other application's AiF menus - host applications will need to manage menu slot
numbers to prevent conflicts.

You may wish to use the AiF sequence to push and pop complete "environments" before
loading/reloading application specific menu sets. This will ensure that there is no possibility of their
menu sets clashing with another application. Please see Save Environment on page 147 for more
information.

Cascading Pop-Down Menus

Cascading menus may be used to enhance existing Pop-Down menus by giving applications the
ability to control and display a menu tree structure. The use and operation of cascading menus is
simply an extension to HostAccess's existing Pop-Down menus system.

The appropriate AiF sequences for cascading pop-down menus are described in the next sections.

C H A P T E R 3 A I F U T I L I T I E S

128 Developer’s Guide

Resetting Cascading Menus

The following AiF sequence resets menu i.e. clears the menu set in the menu set number SN from
the PC's memory.

ESC [= 2 ; SN l

Where:

SN Is the menu set number from 1 to 50.

This sequence need only be used if the application wishes to reload a completely new set of
cascading menus into the same menu set number.

Loading Cascading Pop-Down Menus

To load a cascading pop-down menu into HostAccess's memory on the PC use the following
sequence:

ESC _ N1 ; SN M H1 ; E1 ; E2 TC CN ; .. ; En ESC \

Where:

N1 Is the menu number from 1 to 100. Only menu numbers 1 to 8 may be presented from
the menu bar. The first element in these each of these menus will be taken as the heading
for that pop-down menu.

SN Is the Menu Set number from 1 to 50.

M Is the capital letter 'M' - AiF code for Menus.

H1 Is the first parameter and will be used as this Pop-Down Menu's heading in the Menu Bar
for menu numbers 1 to 8 only. For all other menus, this is the first menu element.

E1..En Are the menu elements, up to 20 per Pop-Down Menu.

TC Is the cascade tag character indicating that if this element is selected by the user a
cascaded menu will be opened. The default tag character is a split vertical bar (|).

CN Is the menu number of the cascaded menu. This menu should itself be loaded with this
menu number.

Note: menu heading and element text strings should not contain semi-colons (interpreted as
element delimiters). Nor should they contain control characters which will corrupt the menu text.
Each menu may be loaded individually by addressing it by its menu number. In other words, menus
can be dynamically reconfigured to suit the application's requirements.

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 129

Example

Cascaded menus are "pointed to" within the text of any menu element by suffixing the text with a
cascade tag character followed by the number of the menu to be cascaded to. For example:

ESC _ 1 ; 1 M First Menu ; 1st Element ; 2nd Element | 16 ESC \

This AiF sequence will load a menu into HostAccess as menu number 1 in menu set number 1 with
a menu heading of "First Menu" and with two menu elements "1st" and "2nd". The second
element, when selected by the user, will cascade into menu number 16 allowing the user to select a
further menu element from this cascaded menu. Needless to say, menu elements in this cascaded
menu may themselves cascade into other menus, and so on.

Activating Cascading Menus

Use the following AiF sequence to activate the Pop-Down Menus for user interaction:

ESC [= 22 ; SN ; m ; e ; Y1 h

Where:

SN Is the menu set number.

m ; e Is the path to a top-level menu or the last selected menu element.

Y1 Is the row number on which the menu bar will be displayed (i.e. between 1 and the
current screen depth). Defaults to 1.

This sequence will run the current menu set number SN starting at top-level menu 'm', element 'e'.

If the "m ; e" parameters are set to "0;0" then HostAccess automatically activates the menu at the
last 'remembered' menu position and redisplays the menu set through to the last selected option
(within cascades if appropriate). If these are set to "0;0" and this is the first time the menu is
invoked, then the option in menu 1, element 1 is highlighted when the menu is activated.

When the cascading menus are activated they appear over the existing screen. As the user moves
through the menus, HostAccess refreshes the underlying screen instantaneously.

C H A P T E R 3 A I F U T I L I T I E S

130 Developer’s Guide

Getting a Menu Response

AiF Pop-Down Menus allow a user to move through them using the up, down, left and right arrow
keys. The Home and End keys will move the highlight bar to the top and bottom of a Pop-Down
Menu list. To select a menu option, the user presses the Enter key when the highlighted element is
the required option. Pressing the ESCape key at any point allows the user to exit from the Pop-
Down Menus.

HostAccess's AiF handles all of the menu movement and underlying screen refreshes without any
intervention or additional code on the host system. Once a user selects an option, AiF will send the
full menu path for the selected menu number and the element number to the host system. It is a
simple matter for the host application to interrogate this response and determine which option the
user has chosen.

Cascading Menu Response Format

The Cascading Menu response from AiF takes the format:

<STX> exit_key <CR> Mn,En .. Mn,En <CR>

Where:

<STX> Is a special Start of Text character (ASCII decimal value 002). This character
indicates the start of the menu response string and enables the application to
discard any typeahead input that could have been sent before the response string
itself.

exit_key Is the Exit Key mnemonic in the AiF Keyboard Stacker format (as defined on
DOS Keyboard Stacker- also see notes on Loading Exit Keys).

<CR> Is a carriage return (ASCII decimal value 013).

Mn Is the number of the option selected and is a single digit number from 1 to 100.

En Is the menu element number of the option selected and is a two digit number
from 01 to 20.

The full menu path for cascaded menus is returned in the form of pairs of menu and element
numbers. Each pair of numbers is separated by a comma.

If the user hits the ESCape key while in the menus, the menu number and element number are both
returned with a value of zero.

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 131

Closing Pop-Down Cascading Menus

Use the following sequences to close the Pop-Down Menu:

ESC [= 22 l

closes the currently open Pop-Down Menu.

When the Pop-Down Menus are activated they appear over the existing screen. If another Pop-
Down Menu had previously been activated, it would have been closed by the activation of the
current menu. In other words, there is no concept of a "stack" of open Pop-Down Menus and
applications should only need to issue one close menu command.

A close menu sequence must be sent to HostAccess before the application can correctly update the
underlying screen. If the menu is not closed, the screen update may appear within the "window"
opened for the currently active Pop-Down Menu's element list.

Note: A simple form of horizontally scrolling menus may be simulated by using the row number in
combination with menu number 1 to 8 without any pop-down menu elements.

C H A P T E R 3 A I F U T I L I T I E S

132 Developer’s Guide

Using Selection Boxes

Selection boxes provide another menu system within HostAccess¡s AiF. They give applications the
ability to present the user with a scrolling window over a list of menu elements. The user may select
any element within this list, as well as being able to rapidly scroll or page up/down this list. A
Selection Box may be "popped-up" at any screen position and may optionally appear over or
alongside other Selection Boxes or pop-down menus, open windows, and so on.

The AiF sequences that can be used to control Selection Boxes are detailed in the following
sections.

Resetting Selection Boxes

The following AiF sequence clears the Selection Box set number SN (1 to 50) from the PC's
memory.

ESC [= 24 ; SN l

This sequence need only be used if the application wishes to reload a completely new Selection Box
into the same selection box set number.

Loading Selection Boxes

To load a Selection Box into HostAccess's memory on the PC use the following sequence:

ESC_ SN ; Y1 ; X1 ; DT ; BT ; MT ; MW S H1 ; E1 ; E2..En ESC\

Where:

SN Is the selection box set number from 1 to 50.

Y1 Is the start row for display.

X1 Is the start column for display. If both x1 and y1 are set to 0 (zero) then the selection
box is centred on the screen if no other selection box, pop-down menu or window is
open ; otherwise, the selection box is positioned to the right of the menu or window.

DT Is the depth of the Pop-Up menu (number of rows in the box). Defaults to the number
of elements in the selection list, or 20 if there are more than 20 elements.

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 133

BT Describes the box type:
0 : No border.
1 : Single line border.
2 : Double line border.
3 : Single line at top and bottom, double at sides.
4 : Double line at top and bottom, single at sides.
32 : Do not clear screen behind menu box.
64: Shadow menu box.
128 : Explode menu box

The last three values for BT are additive, e.g. a single line bordered menu box that is exploded and
shadowed has a BT value of 193 (1 + 64 + 128).

MT Describes the menu type as: normal (0) or Novell menu style (1)

MW Is the maximum width of the Selection Box. Defaults to the width of the longest
element.

S Is the letter 'S', AiF code for Pop-Up menu (Selection Box).

H1 Is the Selection Box heading. If no heading is required this should be null.

E1..En Are menu elements, separated by semi-colons';'.

HostAccess allocates up to 32K of PC memory for Selection Box elements within each menu set. If
the average length of each element were 40 characters, this memory could contain over 800
elements. Applications developers should be cautioned against presenting the user with large
numbers of elements. Users needing to select element 622 will not enjoy scrolling through the
preceding 621 elements nor waiting for this list to be sent to the PC over a communications link!

C H A P T E R 3 A I F U T I L I T I E S

134 Developer’s Guide

Activating Selection Boxes

There are two AiF sequences which can be used to activate selection boxes.

Use the following sequence to activate a selection box for user interaction within a window
automatically sized by AiF:

 ESC [= 23 ; SN ; En h

Where:

SN Is the selection box set number.

En Is the start menu element number. If set to 0, the menu element highlighted is that last
selected by the user, or menu element number 1 if this is the first time the selection box
has been activated.

This sequence tells AiF to size the width of the selection box automatically based upon
the longest menu element or using the DT and MW parameters as specified in the
selection box load sequence. The selection box is cleared and the underlying screen
instantaneously restored, once the user has made a selection and exited the selection box.

To activate a selection box within a previously opened window use the following sequence:

 ESC [= 24 ; SN ; En h

Where:

SN and En Are as defined above.

 When using this sequence, it is the host application's responsibility to close (and
optionally clear) the window within which the Selection Box is activated. This
activation sequence is also useful when an application needs to make a Selection
Box appear on the screen within a window with a heading and/or footing, and
where the window is used to determine the menu's width regardless of the
maximum menu element width.

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 135

Getting a Selection Box Response

AiF Selection Boxes allow a user to scroll up and down the menu using the up and down arrow
keys. The Home and End keys move the highlight bar to the top and bottom of a Pop-Up Menu.
To select a menu element, the user presses the Enter key (or a valid exit key) when the element is
highlighted. Pressing the ESCape key at any point allows the user to exit from the Selection Boxes.

Once a user makes a selection, AiF sends the selected Element number to the host system. It is a
simple matter for the host application to interrogate this response and determine which element the
user has chosen.

The Selection Box response from AiF takes the format:

<STX> exit_key <CR> En <CR>

Where:

<STX> Is a special Start of Text character (ASCII decimal value 002).

exit_key Is the Exit Key mnemonic in the Keyboard Stacker format (see DOS Keyboard
Stacker on page 184 and notes on Loading Exit Keys on page 139).

<CR> Is a carriage return (ASCII decimal value 013).

En Is the number of the menu element selected.

If the user hits the ESCape key to exit from the selection box, the element number is returned with
a value of zero.

Closing Selection Boxes

Use the following sequences to close the selection box:

ESC [= 23 l

Closes the currently open selection box.

When the selection boxes are activated they appear over the existing screen. If another selection box
had previously been activated, it would NOT have been closed by the activation of the current
selection box.

In other words, there is the concept of a "stack" of open selection boxes and applications can have
any number of selection boxes displayed on the screen at any time. Obviously, applications should
issue a close selection box command to close each of the opened selection boxes.

Note: A close selection box sequence must be sent to HostAccess before the application can
correctly update the underlying screens. If the selection box is not closed, the screen update may
appear within the "window" opened for the currently active selection box's element list. In addition,
an open selection box must be closed before being re-loaded with a new list of elements.

C H A P T E R 3 A I F U T I L I T I E S

136 Developer’s Guide

Example

The following pseudo-code will open a Selection Box (in selection box set 1, after first clearing it)
starting at column 10, row 5, 3 rows deep and return to the host the number of the element selected
from a list of 6 choices. The Selection Box would also be framed with a single line border,
shadowed and have a heading of "Choose Option".

options_list = 'Choose Option;1st option;2nd Option;3rd

Option;4th Option;5th Option;6th Option'

send to PC ESC '[=24;1l'

send to PC ESC '_1;5;10;3;65;0S' options_list ESC ' \ '

send to PC ESC '[=23;1;1h'

loop until STX (ASCII dec 002) fo und in user_input do repeat

get menu_choice

if menu_choice equals 1 then

send to PC menu_choice 'st option selected'

if menu_choice equals 2 then

send to PC menu_choice 'nd option selected'

etc. to process each choice, as appropriate.

No consideration has been given to loading and interrogating which Exit Key was used by the user
to exit the Selection Box, nor to colour configuration and so on.

Notes: Positioning of the Selection Box can be automatically adjusted to take into account an
active Menu (either Pop-Down or another Selection Box) by specifying special values for the Y1
and X1 parameters in the Load Selection Box AiF sequence. If these parameters are set to 0 (zero),
HostAccess will attempt to "best" position the Selection Box to the currently selected option in the
active (last displayed) Menu.

If either of these parameters is 0 and there is no other menu active, positioning is centred on either
the column or row (or both) in the currently open Window (or screen).
Using this feature it is possible effectively to cascade Selection Boxes from Pop-Down menus.

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 137

Using Field Input

Processing user keyboard inputs can slow down host applications. This can be aggravated by the
need for the host to echo each key entered by the user, which can also strain the capacity of
networks as each character is transmitted within its own "network packet".

Users accessing the host through public service networks at slower line speeds often suffer longer
response times because of this need to echo each character. Developers are burdened with having
to write complicated, single character, terminal type dependent input routines to provide users with
any form of editing other than backspace.

HostAccess¡s AiF Field Input facilities change all of this.

You can now implement a fast, sophisticated field input system within applications - whilst still
being able to maintain complete control from the host application. Field input can be optimised to
use the PC's processing power with generally no more a couple of lines of code.

How AiF Field Input Works

There are basically three AiF sequences that can control user's input from within a host application.

Each AiF sequence simply informs HostAccess that the user is about to start input. At this point
control is passed to HostAccess. The user then inputs one or more keystrokes and has access to all
of the standard DOS-like facilities for amending, inserting, deleting and moving through the input
text.

When the user presses a valid exit key, the contents of the user's input are sent back to the host.

Field Input Types

Three types of field inputs are supported by AiF:

Line input is the simplest field input type and works on the principle of "cutting" a specified
number of characters out of the screen from a specified cursor position.

Box input enables user inputs to take place within a fixed width single line box and for the box to
be enhanced with box attributes (such as frames, colour).

Window Editor gives applications the ability to define a variable width window over one or more
input rows and for the window to be enhanced with window attributes (frame, colour, titles). This
effectively gives users an on-screen "mini" word processor.

Each of these types is documented in the following sections.

Local processing of user's keyboard inputs may be controlled by host applications if they need a
typeahead facility. Please see Typeahead Mode, see page 177 for more details.

User Keys Available for Field Input

The keys available for the user to move around and modify input text are the same for all field input
types. Users may move around text by using the arrow keys. Overwrite mode is indicated by a solid

C H A P T E R 3 A I F U T I L I T I E S

138 Developer’s Guide

(block) cursor. Insert mode is indicated by an underline cursor. Pressing the Insert <INS> key will
toggle between insert and overwrite modes.

The contents of the input field are always returned to the host application. It is the host
application's responsibility to determine if the field has been changed and how the user finished
(exited) the field input. HostAccess returns to the host the field's contents and an exit key. If exit
keys are loaded, you can use these to exit the field input and return to the application control.

Otherwise, the user may press the ESCape key to exit without changing the field's contents. In Line
and Box input types, carriage return or ESCape exits field input and sends the text to the host
application. If the user is within the Window Editor field input type, then pressing F1 exits field
input and sends the text back to the host application.

If the user is within Line or Box input and starts to key input without moving along the text, then
the text displayed is cleared and the user's input completely replaces the old field. This facility is
optional and may be controlled by the host application.

A number of local editing keys are also available for use while within field input. These may be
Windows, WordStar or WordPerfect compatible, depending upon which mode the user has
configured via the Editing... option of the Configure menu.

Field Input - Exit Keys

All the AiF Field Inputs allow users to exit input by pressing a host application defined exit key.

If these exit keys are not defined, a user can indicate acceptance of the input by entering a carriage
return (but note that within Window Editor the F1 key is the default "acceptance" exit). The
ESCape key may be pressed to exit and indicate non-acceptance of the input. However,
configurable exit keys give host applications immense flexibility in the way in which they handle
user inputs.

For example, using defined exit keys it is possible for an application to provide a "help" hot-key (say
Function Key 10) for any field input anywhere in an application. The user is able to press F10 to
ask the application to display help and then return immediately to the field input to continue
entering data.

In addition, exit keys can be also used by applications as "input field-wide" exits. For example,
pressing F2 could always cause the application to process the same event, regardless of where the
user is within the current field input. This provides for very fast manoeuvring and selections of
actions once the user is familiar with the exit keys defined by the application.

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 139

Loading Exit Keys

Host applications may load application specific exit keys as required by using the AiF sequence
below.

ESC _ Z exit_keys ESC \

Where:

Z Is the capital letter Z - AiF code for exit keys.

exit_keys Are the exit keys that the application will recognise when returned from the AiF
field input. These are as defined in DOS Keyboard Stacker on page 184.

Field Input Response

The user's response is returned to the host application in the following format:

<STX> exit_key <CR> input_str <CR>

Where:

<STX> Is the special start of text character with ASCII decimal value 002.

exit_key Is a two character alphanumeric mnemonic for the exit key used to leave the
field input. The mnemonics returned are the same as those used when loading
the exit keys.

If you specify single characters as exit keys, these will be returned as two characters. For example, if
'X' is specified as an exit key, it will returned as a space followed by the letter X (i.e. ' X').

<CR> Is a carriage return character with ASCII decimal value 013.

input_str Is the string as input by the user. Note that the response from Window Editor
is expanded to return each line of the window as a separate input - please see
Window Editor on page 144.

Example

To load HostAccess with the exit keys required for Field Input so that only Carriage Return,
ESCape and the Function Keys F1 and F2 are permitted, use the following AiF sequence:

ESC _Z F1 F2 ESC \

Terminal Echo

You should turn terminal echo off before getting the response from AiF Field Input, so that this is
not displayed on the user's screen. You can use an AiF sequence to suppress host echoed output,
instead of the host system's equivalent command. For more details on this please see Host Echo
On/Of f on page 156. Terminal echo should be turned back on once the menu response has been
input.

C H A P T E R 3 A I F U T I L I T I E S

140 Developer’s Guide

Exit keys are common between the AiF Menus, Field Inputs and responses from Image displays - it
is the application's responsibility to maintain different exit keys between menus, field inputs and
Image displays, if required.

Line Input

This sequence enables host applications to define a fixed length field on part or all of one row on
the screen for user input. Any text already on the screen within that field will be taken as the initial
input text by the user. The user can modify this text before sending it to the host application.

ESC [= 25 ; FL ; VL ; SM h

activates line input at the current cursor position.

Where:

FL Is the integer field length (as a number of columns on the screen) from which to "cut"
text from the screen. It also defines the maximum number of characters that may be
input.

VL Is the validation parameter as any one of the following:

 0 No validation (any input accepted).

 1 Integer input only.

 2 Numeric input only.

 3 Alphabetic input only.

 4 Alphanumeric input.

 5 Hex input.

 6 Hidden input (input is echoed as # characters: useful for entering passwords).

SM Is the start mode code for the action to be if the first user input character is not an
editing action, i.e. is a character to enter into the field. This parameter should be
assigned as:

 0 No special action for first user input.

 1 If the first user input character is not an editing character, clear the field first.

The application must place the cursor at the (column, row) position from which input is to take
place immediately BEFORE sending this AiF sequence.

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 141

Getting a Line Input response

Line input responses from AiF take the format:

<STX> exit_key <CR> input_str <CR>

Where:

<STX> Is a special Start of Text character (ASCII decimal value 002).

 This character indicates the start of the field input response string and enables
the application to discard any typeahead input that could have been sent before
the response string itself.

exit_key Is the Exit Key mnemonic in the AiF Keyboard Stacker format (as defined in
DOS Keyboard Stacker on page 184 – also see notes on Loading Exit Keys on
page 139).

<CR> Is a carriage return (ASCII decimal value 013).

input_str Is the text as input by the user.

Application Examples

Applications tend to use the same start column for multiple fields, to display the contents of the
fields and then allow the user to modify a field by skipping up and down lines.

As each field is input the application redisplays the contents, permits the user to input new text and
then displays the new field again.

With this AiF sequence, there is no need to do this. The application displays the field contents,
places the cursor at the start of the field and switches AiF line input on. Redisplay of the field's text
is unnecessary as the text the user sees on the screen is what has been sent to the host application.

Note: Trailing spaces are trimmed from the input before being sent back to the host application.

C H A P T E R 3 A I F U T I L I T I E S

142 Developer’s Guide

Box Input

Box Input enables host applications to pop up an Input Box anywhere on the screen and request
user input. This input may be optionally validated within the PC before being sent back to the host.
Validation can be specified to optionally restrict the user's input to numeric only, alphanumeric,
hidden (for passwords) and so on.

User input is NOT constrained to the box's width. Text input may exceed the width of the box and
AiF will indicate that additional text exists by displaying appropriate arrow symbols. The maximum
length for the text that can be input should be specified by the host application.

The Input Box itself may be enhanced with selected frame styles and/or title. Once the user has
completed input, the box may optionally disappear and the underlying screen be immediately
restored.

Box input provides an especially elegant adjunct to handling user input from AiF pop-up and pop-
down menus. HostAccess users will probably already be familiar with the Box Input style as it is

used within HostAccess¡s own configuration menus.

Box AiF Sequence

The following AiF sequence enables you to define an input box.

ESC _ Y1 ; X1 ; FL ; BS ; BT ; VL ; SM J text ; title ESC \

Where:

Y1 Is the top left-hand row.

X1 Is the top left-hand column.

 Setting X1 and Y1 to 1 displays a box starting at the top left-hand corner of the screen.
Setting X1 and Y1 to 0 displays a box starting at the current cursor position (or currently
selected menu element).

FL Is the maximum field input length.

BS Is the width of box. This may be less than the field input length. If zero, the maximum
field input length is used.

BT Describes the box type:

 0 No frame.

 1 Single line frame.

 2 Double line frame.

 3 Single line at top and bottom, double at sides.

 4 Double line at top and bottom, single at sides.

 64

128

Shadow window.

Explode window

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 143

 The last two values for BT are additive, e.g. a single line framed box that is exploded and
shadowed has a BT value of 193 (1 + 64 + 128).

VL Is the validation parameter as any one of the following:

 0 No validation (any input accepted).

 1 Integer input only.

 2 Numeric input only.

 3 Alphabetic input only.

 4 Alphanumeric input.

 5 Hex input.

 6 Hidden input (input is echoed as # characters: useful for entering passwords).

SM Is the start mode code for the action to be if the first user input character is not an
editing action, i.e. is a character to enter into the field. This parameter should be
assigned as:

 0 No special action for first user input.

 1 If the first user input character is not an editing character, clear the field first.

J Is the capital letter 'J': AiF code for Input.

text Is the input text to be displayed when the Input Box is activated and modified by the
user (may be null).

title Is the heading text for the Input Box (may be null). If a box type of 0 (no frame) is used,
the title is discarded.

Getting a Box Input Response

Box input responses from AiF take the format:

<STX> exit_key <CR> input_str <CR>

Where:

<STX> Is a special Start of Text character (ASCII decimal value 002).

 This character indicates the start of the field input response string and enables the
application to discard any typeahead input that could have been sent before the
response string itself.

exit_key Is the Exit Key mnemonic in the AiF Keyboard Stacker format (as defined in DOS
Keyboard Stacker on page 184 - also see notes on Loading Exit Keys on page 139).

<CR> Is a carriage return (ASCII decimal value 013).

input_str Is the text as input by the user.

Once the user has exited from the Input Box this box is automatically cleared from the screen and
the underlying screen restored immediately.

C H A P T E R 3 A I F U T I L I T I E S

144 Developer’s Guide

Box Input Response Examples

To pop-up an Input Box on row 12, column 15 of the screen to prompt the user to enter a 50-
character, alphabetic-only surname within a box 25 characters wide, an application should use the
following AiF sequences:

send to PC 'ESC[=12;15;25;50;1;3;0;J;Enter Surname ESC \ '

The above Input Box has a single line frame with a heading of "Enter Surname". The maximum
input length is 50 characters within a box width of 25. Also note that the box will be cleared from
the screen when the user's input is complete.

To prompt the user with an existing surname, say "Harvey" (that can be accepted or amended by
the user), simply use the sequence below:

send to PC 'ESC[=12;15;25;50;1;3;0;JHarvey;Enter Surname ESC \ '

To prompt the user for the same surname after, say, a pop-down menu or Selection Box option
"change surname" has been selected, use the sequence below:

send to PC 'ESC[=0;0;25;50;1;3;0;JHarvey;Enter Surname ESC \ '

Note: both the Y and X co-ordinates of the box have been set to 0 (zero). This means that
HostAccess will position the box at the current cursor co-ordinates. Where this is done from an AiF
menu, the current cursor position is taken as being one row below the highlighted element with the
start column at the centre of the element. This positioning occurs automatically but may be
constrained by factors such as the width of the input box and proximity to the edges of the screen.

Trailing spaces are trimmed from the input before being sent back to the host application. Box
input limits the entry to just one line on the screen. Applications requiring multiple lines of input
should user the Window Editor AiF sequence described in Window Editor.

Window Editor

The AiF Window Editor enables host applications to pop up an input window (of one or more
lines) anywhere on the screen and request user input. The user may manoeuvre around the text
within the window using all of the available PC based keys to insert, delete and add text.

User input is constrained by the window's width and depth.

The input window itself may be enhanced with selected frame styles and/or titles in accordance
with AiF Windows. In other words, the host application should normally open an AiF window
before activating the Window Editor. Likewise, once the user has completed input, an AiF sequence
should be used to close and optionally clear the input window.

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 145

The Window Editor is particularly suited to applications that need to capture user notes. It, in
effect, acts as a very fast local word processor with the major benefit that the user's notes are only
sent to the host once the user is satisfied with the text that has been entered. This has considerable
performance advantages for applications running over networks or asynchronous lines.

ESC [= 26 h

switches the window editor on, using the text in the currently open window.

Getting A Window Editor Response

Window Editor responses from AiF take the format:

<STX> exit_key <CR> inp_str1 <CR> .. inp_str NN <CR><STX><CR>

Where:

<STX> Is a special Start of Text character (ASCII decimal value 002).

 This character indicates the start of the field input response string and
enables the application to discard any typeahead input that could have been
sent before the response string itself.

exit_key Is the Exit Key mnemonic in the AiF Keyboard Stacker format (as defined in
DOS Keyboard Stacker on page 184 – also see notes on Loading Exit Keys
on page 139).

<CR> Is a carriage return (ASCII decimal value 013).

inp_str1 ..
inp_str NN

Is the text input by the user for each line within the input window, where NN
is the number of lines in the window.

It is important to note that the response from Window Editor is terminated with another STX
character. The advantage of this is that null trailing lines are not returned to the host. Applications
should therefore always check for the trailing STX character and use this to identify the end of the
user inputs.

C H A P T E R 3 A I F U T I L I T I E S

146 Developer’s Guide

Window Editor examples

To pop-up an input window on row 18, column 10 of the screen to prompt the user to enter up to
4 lines of input text with each line not exceeding 35 characters, an application should use the
following AiF sequences:

Open window and add title first:

sen d to PC 'ESC[=18;10;21;44; 193;0;1;33;41u'

send to PC 'ESC_WInput text WindowESC \ '

Activate Window Editor:

send to PC 'ESC[=26h'

Look for the start of text delimiter indicating user has finished input:

loop

 get user_response

until 1st character of user_response eq ASCII 002

repeat

The exit key should be interrogated at this point:

exit_key = 2nd character onwards of user_response

Now get the user text from the input window (input this into an array called user_text):

ctr = 1

loop

 get user_response

until user response eq ASCII 002

 user_text(ctr) = user_response

 ctr = ctr + 1

do repeat

Finally, close the window leaving it visible on the screen:

send to PC 'ESC[=1v'

Notes: Trailing spaces are trimmed from the input before being sent back to the host application.

If exit keys have not been loaded (see Loading Exit Keys on page 139) then the ESCape key and the
Function key F1 are available as exit keys by default.

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 147

Save Environment

Host application programs that have been designed to interface with other (possibly unknown)
applications which might also be using AiF facilities may experience "conflicts of AiF interest" with
the other applications, such as loading AiF menus into the same menu set number, changing but not
resetting screen colours and so on.

These conflicts may be avoided by ensuring that applications "save" their AiF environment at an
appropriate point by using the AiF sequence in the following sections.

Push environment

ESC [= 99 p

Pop environment

ESC [= 99 q

Push environment will essentially save everything except backpages for the currently active session
including:

Â The current screen.

Â The screen mode (row & column settings).

Â AiF windows.

Â Screen attributes.

Â AiF stacks and slots, menus and selection boxes.

Â The screen's background fill character and attribute.

Session dependent attributes saved include:

Â Cap lock and num lock status.

Â Mouse status.

Â Function keys, AiF exit keys and key changes.

Â Current emulation in use.

Application Environment Examples

Applications providing gateways out to other applications that might themselves make use of AiF
should save their own environments before shelling out to the gateway. Obviously, the application
would want to restore its original environment once control has been returned from the gateway.

Notes: You should ensure that the "environments" saved stack is popped in the correct order to
properly restore environments for earlier programs. Saving environments can consume sizeable
chunks of the PC's memory depending upon the number and size of menu and selection boxes
loaded, the number of screens pushed on to the screen slots stack etc.

C H A P T E R 3 A I F U T I L I T I E S

148 Developer’s Guide

Display Optimisation

Users are highly sensitive to the time an application takes to paint the screen. If the user is using a
dial-up link or a network, it can take several seconds to paint a complex screen. These types of
delays are often more critical when a user is stepping through applications screens than when
waiting for a response to a complex transaction.

HostAccess's Display Optimisation features address this problem by providing programmable
facilities to dramatically speed up screen updating.

The following sections describe how host applications can make use of the AiF features called
SLOTs, FORMs and FREEZE ON/OFF. All of these features have been designed to minimise the
time, or perception of the time, taken to display host application screens. In many cases, this time
can be reduced by more than a hundred-fold.

Overview of Features

SLOTs make use of the PC's memory to save and restore screen images - this is the fastest method
of redisplaying an application screen. Screen images may be pushed on to a stack in the PC's
memory and popped off the stack as required by the application. Screen display times are virtually
instantaneous - the user no longer needs to wait for 2 or more seconds while the host system sends
2,000 or more bytes to redisplay the screen.

FORMs is another means of saving and restoring screen images and display text which are stored
on the PC's disk drive instead of within memory.

FREEZE ON/OFF is a very clever technique for improving the user's perception of screen display
times. If an application turns FREEZE ON, builds the screen (this is done in the memory of the
PC and is not visible to the user) and then turns FREEZE OFF, the effect is one of instant screen
display.

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 149

SLOTs

AiF SLOTs provide the facility to store any screen image into the memory of the PC. You can
address these images as 'SLOTs' numbered from 1 to 50 or you can push and pop images from a
SLOT STACK. When restored to the screen, the image will appear before the user literally instantly.

Using the SLOTs feature, you can add a major enhancement to your application in minutes. This is,
the ability to call any other application from anywhere within any application. By telling HostAccess
to save the current screen image to a SLOT, your application can go off and execute other
programs. Upon returning to your application, you simply request HostAccess to redisplay your
screen image from that SLOT instantly.

SLOTs AiF Sequences

ESC [= N p Save the current screen image to slot number N.

ESC [= N q Restore slot N to the screen.

Where:

N Is a SLOT number from 1 to 50.

ESC [= p Push the current screen image on to slot stack.

ESC [= q Pop screen image from slot stack.

Note: the AiF Sequences ESC [= 99 p and ESC [= 99 q are used by the PUSH/POP
environment

SLOTs Examples

At any input point the application should allow the user to invoke another application and then, on
quitting that application, return to the original with the screen exactly as the user left it (including
cursor position, colour attributes, etc.). Using AiF's SLOT feature, the Host application can issue
the following AiF sequences:

 if input is 'run another application' then

PUSH SLOT send to PC 'ESC[=p'

 run 'another application'

 return from other application

POP SLOT send to PC 'ESC[=q'

 end if

This 'code' pushes the current screen image into the SLOT STACK and pops it back as soon as the
user returns from the other application.

The screen image will be restored instantly, with all of the screen attributes, colours and cursor
position set exactly as the user left them.

C H A P T E R 3 A I F U T I L I T I E S

150 Developer’s Guide

Using Push and Pop SLOTs applications can call other applications indefinitely with each
application pushing and popping its own screen images without conflict with previous applications.

An application frequently makes use of a data entry screen. Rather than sending this screen to the
PC each time it is required, the application could save it in a numbered SLOT at the start of the
application.

screen_nbr = 1

send to PC data_entry_screen

send to PC 'ESC[=' screen_nbr 'p'

When the data entry screen is next required, the application only needs to send 'ESC[=' screen_nbr
'q' to instantly redisplay this same screen. The screen image will remain in the Slot for the entire
HostAccess session, until overwritten by another screen or until the slots are cleared.

The SLOT STACK Facility

If there is a risk of applications clashes when using the numbered SLOTs, developers are
recommended to make use of the SLOT STACK facility. As users move between applications (or
areas within an application) and the application knows that the user will return to the previous
screen, it is simpler to push and pop the required screen images from a SLOT STACK.

Each SLOT (screen image copy) requires approximately 4K of the PC's memory. There is no limit
to the number of screens that may be pushed into a SLOT STACK other than the size of available
memory in the PC. In practice, applications that push screens down more than six levels will tend to
lose the user (user's memory's are limited too!).

Push SLOT will save the following screen related information together with a copy of the screen
image:

Â Cursor position.

Â cursor status (shape, on/off).

Â Screen attributes (colour, flashing, etc).

Â Background fill character and attributes (as used for clears, clear screen, end of line, etc).

Â Wrap and field modes.

Note: If your application needs to save more than the current screen and related information, see
Save Environment on page 147.

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 151

FORMs

HostAccess enables you to store any host output on the PC's Floppy or Hard Disk. This output can
be a whole screen, partial screen, AiF menus or selection boxes, or anything that you might output
frequently. The output is stored in any specified form numbered from 1 to 255. Requesting
HostAccess to display a form results in the output being processed at high speed. Whether the user
is running at 1200 or 19200 baud, forms will always appear at the same fast speed.

Note: Characters with an ASCII value greater than 127 can be stored in forms, thereby
accommodating special characters required for some languages, such as French.

FORMs AiF Sequences

Use the following sequence to write to a FORM file.

ESC [= Fn ; Fv ;1 s TEXT ESC [= s

Use the following sequence to process from a FORM file.

ESC [= Fn r

Where:

Fn Is the Form Number as an integer from 1 to 255.

Fv Is the Form Version as an integer from 1 to 255. The ';1' is mandatory.

s Is the lowercase letter s - AiF code for FORMs.

TEXT Is the host output to be processed (and usually displayed on the screen). This may
contain any valid screen display sequence (for example, cursor addressing, attribute
setting) including other AiF sequences (such as FREEZE ON/OFF, load AiF
Selection Box, etc.)

Note: This AiF sequence is terminated by the ESC [= s sequence and not the standard AiF
terminator. This is because other AiF sequences can be stored within a form.

FORM files

The default DOS file where FORMs are saved to and restored from is called HOST.FRM in the
directory in which HostAccess is running.

To specify an alternative FORM file, use the following sequence:

ESC _ F DOS_form_file_name ESC \

This DOS_form_file_name may include a full DOS pathname.

C H A P T E R 3 A I F U T I L I T I E S

152 Developer’s Guide

To clear the currently active FORM file of FORMs use the following sequence:

ESC [= s

When a Form is created, it is given a version number of 1. Each time a Form is updated, this
version number is incremented by 1.

To request the version number from a FORM file, use the following AiF sequence:

ESC [= Fv ; 1 r requests version number for FORM number Fn.

This will return to the host the following response:

<STX> <CR> Fn <CR>

Where:

<STX> Is a special Start of Text character (ASCII decimal value 002).

<CR> Is carriage return (ASCII decimal value 013).

Fn Is the FORM version number as an integer between 1 and 255. If a version
number of 0 (zero) is returned, this indicates that the last specified Form Number
does NOT exist.

FORMs Examples

Applications tend to build screen images by combining a number of variables into one and then
displaying this consolidated variable. To save whole or part of any variable that is to be displayed,
host applications simply need to insert this variable into an AiF sequence to save a FORM.

For example, to save and restore a three line portion of a screen display into and from the FORM
numbered 22 in the FORM file HELPTEXT.FRM (in the HostAccess directory), use the following
code.

Assign FORM file with:

send to PC 'ESC_F' : 'HELPTEX T.FRM' : 'ESC \ '

Build Screen Display item:

screen = time : date : screen.heading

screen = screen : column1,row1 'line 1'

screen = screen : column2,row2 'line 2'

Now save this to PC's disk with:

send to PC 'ESC[=22;1;1s' : screen : 'ESC[=s'

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 153

At any point within the application, the screen can be redisplayed from the PC's FORM file
as follows:

send to PC 'ESC[=22r'

Notes on FORM files

Imagine storing your applications screen images in different files on the PC in different languages.

FORMs are actually held in a format that when restored, is replayed through HostAccess as if the
characters were being sent from the host application to HostAccess. Because this FORM
information is coming from the PC's disk, it is faster than having to send the same screen
information from the host system. However, this does mean that FORMs do need to be compatible
with the Terminal Type currently being emulated by HostAccess. In other words, if an application is
running in VT100 emulation mode through HostAccess, any FORMs that are to be displayed must
have previously been saved in VT100 emulation mode.

The number of FORM files is only limited by the available disk space on the PC. There is no limit
to the number of FORM files that may be addressed by AiF FORM sequences.

It is important to realise that FORM files may contain any AiF sequence. This enables applications
to store complete Selection boxes and/or Pop-Down Menu structures/selection lists on the PC's
hard disk with obvious performance advantages when it comes to loading the menus. Diskless
workstations would simply load such FORM files from the network fileserver's hard disk (say, from
the same DOS directory from which HostAccess was invoked). In this environment, the host
application must also manage the FORM files and their version numbers to ensure that they are
present and that they contain the correct menu structures/selection lists. An AiF sequence is also
provided to verify the existence of DOS files.

If you try to read a FORM that does not exist, HostAccess just ignores the request. If a FORM
already exists, a write FORM sequence will overwrite it. The maximum size of a FORM is currently
32K, the maximum size of a form file is 64K. If you attempt to write a FORM greater than this size,
it will be truncated, resulting in a corrupt screen when displayed.

If your screen is corrupted when you display a FORM, check that you had some form of flow
control set when you loaded the form. If, for some reason, you are unable to use flow control,
ensure that there is a delay in your program after sending each FORM to give HostAccess time to
write the FORM to disk.

C H A P T E R 3 A I F U T I L I T I E S

154 Developer’s Guide

Freeze On/Off

This simple but effective feature available under HostAccess gives end users the appearance that
their host machine's performance has been significantly improved.

It enables host applications to temporarily suppress screen output from HostAccess whilst building
a new screen in the PC's memory and then to instantly release this screen output into view.

Freeze On/Off AiF Sequences

ESC [= 1 h Will FREEZE the screen.

ESC [= 1 l Will display data sent during FREEZE.

Currently, most applications display information on a data entry screen one field at a time. If the
host system is slow, the user can actually see each field being displayed, in bursts on the screen.

Imagine being able to see all of this data appearing instantly on the screen. That is exactly what
HostAccess's freeze on and freeze off facility provides. Before sending the first field, you turn
freeze on, all subsequent data sent to the screen is not actually displayed.

After the last field has been output, you turn freeze off. This makes all the changes appear instantly
on the screen. This technique can be used when clearing fields, printing boxes, drawing logos etc.

Notes on Freeze On/Off

When you send the freeze sequence to HostAccess, a flag is set telling HostAccess not to update the
PC screen until the unfreeze code is received. Any data received from the host after the freeze
command is processed, will update the screen image and back pages in memory but the physical
screen is not changed. When the unfreeze command is received and the screen image in memory is
used to update the real screen, this will happen instantly.

When used with HostAccess SLOTs, it can provide the application developer with the facilities of a
multi-page terminal. The second page can be placed in a numbered HostAccess slot. It is updated
by freezing the screen, pushing the current screen on to the SLOT STACK, pulling the second page
on to the screen, updating it, putting back into its numbered SLOT, popping the original screen
from the SLOT STACK and unfreezing the screen. Yes, that does sound like a lot of processing but
HostAccess is so fast at moving screens between SLOTs and the number of characters that have to
be sent to achieve the above listed functions is so small that this approach is very practical and very
quick.

The use of freeze on/off is often governed by subjective assessments of how the application
screens should be presented to users.

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 155

One simple means of implementing this feature is to adopt the philosophy that the application
should turn freeze on immediately AFTER each user input and turn freeze off just BEFORE each
user input. This tends to make all screen output appear as if it is all instant. But, this can also mean
that on very slow host systems or when the user is accessing the system through a very slow link
(say at 2400 baud), the application may leave the user with a 'frozen' (blank or unchanging) screen
while HostAccess is waiting for the screen data and then the freeze off sequence to be sent down
the line.

Many applications have catered for this type of 'speed problem' by displaying a standard message
such as 'Now processing ... please wait' whenever the user selects an option and the screen
subsequently needs to be changed. Of course, with HostAccess's AiF you could now show that
message in a shadowed coloured box!

As an aid to developers implementing this freeze feature, we have added a special hot-key ALT/U
which will immediately unfreeze the current screen image. This can be very useful when your
program forgets to send the unfreeze sequence and you have spent a few seconds watching a blank
PC screen and wondering just what your wonderful new release of software is doing!

C H A P T E R 3 A I F U T I L I T I E S

156 Developer’s Guide

Host Echo On/Off

It is useful on occasions to be able to suppress the host system's echoed output. An AiF sequence is
available for this.

ESC [= 13 h Will enable host echo output to the screen.

ESC [= 13 l Will discard host echo output to the screen.

This will discard any text or cursor movement output from the host. It does not suppress host
output to the system message line.

Examples

This AiF sequence may be used to replace the host ECHO ON/OFF, HUSH ON/OFF
commands. Where these are not known (or are different for different host systems), this AiF
sequence gives applications a consistent method of suppressing and enabling screen output.

Notes: Remember to enable host echo after suppressing it, if you want your users to see anything
on the screen.

This sequence will not suppress any other AiF sequences output by the host, i.e. AiF sequences to
open windows, update the system message line, etc. will still be carried out.

This is not the same as turning the host's echo off since characters are still echoed from the host to
HostAccess.

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 157

Applications Enhancement

Any application is used and viewed by the user through the screens that the application displays. So
applications should have 'functional attractiveness'.

Application screens should display screen information as concisely as possible and attract the user's
attention to the correct part of the screen, as required.

The following sections show how to improve screens using Box and Line drawing.

Advantages to Developers

Because all of HostAccess's AiF features are actually processed within HostAccess on the PC,
developers using these features will gain substantial benefits in the following areas:

Â Reduced I/O burden on host system.

Â Minimal host applications code required to achieve sophisticated screen displays (with
consequent reductions in software maintenance).

Â Fast implementation of the AiF features within existing and new host applications.

Â Easy to code and easy to support other (dumb) terminals within the same application.

Box Drawing

Using AiF's Box Drawing feature, application screens can be very effectively enhanced by
combining boxes and colour. AiF Box Drawing sequences are typically less than 18 bytes long -
compare that with the number of characters conventionally required to draw boxes on host
application screens! Boxes may be optionally framed, shadowed and/or exploded.

Use the following sequence to draw a box:

ESC [= Y1 ; X1 ; Y2 ; X2 ; BT ; A1 ; ... ; An x

Where:

Y1 Is the top left-hand row.

X1 Is the top left-hand column.

Y2 Is the bottom right-hand row.

X2 Is the bottom right-hand column.

 Setting X1 and Y1 to 1 will display a box starting at the top left-hand corner of the
screen.

 If the X1 and Y1 parameters are set to 0, the box will be centred within the currently
active window (or screen, if no window active). The box's dimensions are then
determined by the absolute values of X2 and Y2.

C H A P T E R 3 A I F U T I L I T I E S

158 Developer’s Guide

BT Describes the box type:

 0 No frame.

 1 Single line frame.

 2 Double line frame.

 3 Single line at top and bottom, double at sides.

 4 Double line at top and bottom, single at sides.

 64 Shadow window.

 128 Explode window.

 The last two values for BT are additive, e.g. a single line framed box that is exploded and
shadowed has a BT value of 193 (1 64 128).

A1 -
An

Are optional parameters to set the colour of the box. If not present, the current attribute
is used.

Box Drawing Application Examples

To draw an unframed exploding box of dimensions 3,3 to 10,40 with a background colour of Cyan
and a foreground colour of Yellow, use the following sequence:

ESC [= 3 ; 3 ; 10 ; 40 ; 128 ; 0 ; 1 ; 33 ; 46 x

Where:

3;3;10;40 Are the box co-ordinates.

128; Is the box type of exploding unframed.

0;1;33;46 Are the parameters to assign colours (note the 1; is used to set the high
intensity bit so that Yellow is generated by an attribute setting of 33, not
Brown).

Notes: The frame is drawn round a box of the requested dimensions, i.e. area of the screen
covered by the framed box is larger than the requested dimensions. The box is drawn in the
requested colour or, if no colour is specified, the current screen colour attributes are used.

AiF windows are similar to boxes and should be used if the host application needs the ability to
restrict further output to within the dimensions of the Window (box), without effecting the
underlying screen. AiF box drawing always updates the underlying screen and will clear the area
"under" the box. To add a frame effect around an area of the screen, without clearing this area, you
can use either an AiF window (with the no clear on open option) or the AiF line drawing sequence
(with the line co-ordinates set to those normally used for a box).

Line Drawing

Many terminal protocols support line drawing characters. However, just drawing a line across the
screen involves sending 80 or so characters to the terminal. To draw a complex form would involve

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 159

several lines of code (especially if trying to cope with merging lines) and possibly thousands of
characters being sent to the screen.

AiF's enhanced line drawing commands enable you to draw complex lines and frames with very
simple commands that involve sending only a few characters from the host application program.
Lines can be specified as single or double and HostAccess will intelligently merge new lines with any
existing lines on the screen, if requested.

Use the following sequence to draw a line:

ESC [= Y1 ; X1 ; Y2 ; X2 ; LT ; A1 ; ... ; An z

Where:

Y1 Is the top left-hand row.

X1 Is the top left-hand column.

Y2 Is the bottom right-hand row.

X2 Is the bottom right-hand column.

 Setting X1 and Y1 to 1 will draw a line starting at the top left-hand corner of the screen.

 If either pair of X1,,X2 or Y1,Y2 parameters are set to 0, the line will be expanded to the
full width of the currently active window (or screen, if no window active).

 To draw horizontal lines make Y1 equal to Y2.

 To draw vertical lines make X1 equal to X2.

LT Describes the line type:

 0 Single line.

 1 Double line.

 2 Single line with merging.

 3 Double line with merging.

The merging option requests AiF to intelligently merge the line or frame with any other line
characters it meets or crosses, i.e. adding the appropriate 'T's, crosses, etc.

A1 - An Are optional parameters to set the colour of the line. If not present, the current
attribute is used.

Line Drawing Application Examples

To draw a double line frame of dimensions 3,3 to 10,40 in Yellow on a Black background, use the
following sequence:

ESC [= 3 ; 3 ; 10 ; 40 ; 1 ; 0 ; 33 ; 1 ; 40 z

Where:

C H A P T E R 3 A I F U T I L I T I E S

160 Developer’s Guide

3;3;10;40 Are the box co-ordinates.

1; Is the draw double line option.

0;33;1;40 Are the parameters to set the colour attributes.

To draw a horizontal line from 5,3 to 5,40 (i.e. on row 5 from column 3 to 40), merge with any
existing lines on the screen and use the current screen colours, use the following sequence:

ESC [= 5 ; 3 ; 5 ; 40 ; 2 z

To draw a horizontal line the full width of the screen (or currently open window) on row 11, use the
following AiF sequence:

ESC [= 11 ; 0 ; 11 ; 0 z

Note: If the line co-ordinate parameter X1 is not equal to X2 and/or Y1 is not equal to Y2, a
'frame' will be drawn. There are certain advantages to using this method of drawing frames as
opposed to using the AiF Box Drawing sequence. Firstly, the area embraced by a line drawn 'box'
will be left intact (not cleared as in box drawing). Secondly, the borders of this line drawn box may
be intelligently merged with other lines on the screen.

System Message Line (Line 25)

Most terminal emulations provide a system message line and HostAccess's emulations will support
these. For those that do not support this feature, for example VT100, there is an AiF sequence to
provide this facility.

ESC [= Cl ; A1 ; ... ; An w message CR

Where:

Cl Is the starting column number.

 If Cl is absent or zero, the system message line is cleared and the column set to 1.
Otherwise the line is left unchanged and the column set as specified. Characters
are displayed until a carriage return is received or until the last column has been
written to.

A1 .. An Are parameter settings to change the colour attributes on the System Message
line. If not specified, then the current screen colours are used.

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 161

Message Is the text required on the System Message Line.

CR Is carriage return to terminate output to the System Message Line.

System Message Line Application Examples

To display the message MAIL WAITING in White text on a Cyan background at column 20 on the
System Message Line, use the following sequence:

ESC [= 20 ; 0 ; 1 ; 37 ; 46 w Mail Waiting CR

The colour parameters are 0;1;37;46, and w is the AiF code for the System Message Line sequence.

To clear the System Message Line, use:

ESC [= w CR

Notes: While in System Message Line mode, message text can only consist of standard displayable
characters. Non-displayable codes will terminate the System Message Line.

If the HostAccess status line is being displayed, it is switched off. The System Message Line is held
in memory and redisplayed when the status line is switched off, i.e. the user may toggle between the
status line and the System message line.

Application control of the system message line display is now available through an additional AiF
sequence documented in the following section. This enables applications to restore the status line
without the need for the user to redisplay the status line (via the Configure menu).

System Message Line Control

Full control of the System Message Line display can now be achieved by host applications using the
AiF sequences below.

HostAccess's own status line can readily be restored as required by applications after they have used
the System Message Line for their own messages (by using the AiF sequence described in the
previous section).

ESC [= 11 h Forces the display of the current (application) System Message Line.

ESC [= 11 l Forces the display of the HostAccess Status Line, if this was enabled when
HostAccess was loaded.

C H A P T E R 3 A I F U T I L I T I E S

162 Developer’s Guide

System Message Line Control Examples

An application will often use the System message line to display its own status information. On exit,
it can now restore the user's HostAccess Status Line display (on the same line as the System
Message Line).

display System Message Line

 send to PC 'ESC[= 0w ..job UPDATE.BALANCES

 started at 12:22:15 ..'

on exit from the program, restore the HostAccess Status line

 send to PC 'ESC[=11l'

Note: If HostAccess's Status Line Display has been disabled through HostAccess's configuration
menus, it will not be possible to redisplay it with AiF sequence above.

Screen Modes, Including 132 Column Support

Host applications may switch the screen in to and out of these screen modes as required by using
the AiF sequences below.

ESC [= 3 ; n h turns specified screen mode on.

Where:

n Is the screen mode value as defined below:

 Mode Rows x Cols Monitor/Card

 0 132 x 24 VGA cards only

 1 80 x 24 (All cards)

 2 80 x 42 (EGA cards only)

 3 80 x 49 (VGA cards only)

 5 132 x 25 (VGA cards only)

 6 80 x 25 (VGA cards only)

 7 80 x 43 (EGA cards only)

 8 80 x 50 (VGA cards only)

 9 40 x 24 (All cards)

 10 40 x 25 (All cards)

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 163

Screen Modes Examples

A user wants to view a report before printing it. The host application can set the screen to 132
columns as follows:

set host terminal width to 25 rows by 132 columns

send to PC 'ESC[=3;5h'

 display and page through report

send to PC 'ESC[=3l'

set host terminal width back to 25 rows by 80 columns

Note 1 If mode parameter is null, it will have the same effect as setting mode to 1.

ESC [= 3 l returns screen mode to the settings as configured by the user.

Host applications should first ensure that the user's PC can support the required mode. Invalid
modes will be ignored by HostAccess.

Note 2 HostAccess supports a variety of screen modes with the appropriate card and monitor.
However, users should be aware that not all card and monitor configurations can support all of the
modes shown above.

Note 3 The PC must be capable of supporting the desired screen modes. The VGA type will need
to have been configured to the correct VGA BIOS type (within HostAccess's configuration menus)
before trying to switch into 132 column screen mode.

Note 4 When you change screen modes, you reset a number of session parameters including
closing any open AiF windows, AiF menus and clearing screen backpages, slots, etc. If your
application needs to preserve the current environment before changing screen modes, use the Save
Environment AiF sequence described on page 147.

Changing Cursor Shape

Host applications may change the cursor shape from a line in to a block and vice versa by using the
AiF sequences below.

ESC [= 4 h Selects BLOCK cursor.

ESC [= 4 l Selects UNDERLINE cursor.

Changing Cursor Shape Examples

This simple sequence can be useful when writing routines that toggle between different input modes
depending upon what the user is currently doing. For example, many DOS products will use a block
cursor if the user is in Overwrite mode, or an underline cursor, if the user is in Insert mode. This
sequence can be used to emulate this requirement within host applications.

C H A P T E R 3 A I F U T I L I T I E S

164 Developer’s Guide

Note: Some of HostAccess's terminal emulations (such as Wyse 60) already support this facility.
However, the above AiF sequence makes this feature available in all of HostAccess's emulations.

Switching Cursor On/Off

Host applications may switch the cursor on or off as required by using the AiF sequences below.

ESC [= 10 h Switches cursor ON.

ESC [= 10 l Switches cursor OFF.

Cursor Application Examples

This simple sequence is useful when writing routines that need to hide the cursor for some reason
or another. For example, when displaying error messages within a window it is nice to suppress the
cursor and print a 'press any key' message in the window's footing.

Note Some of HostAccess's terminal emulations (such as Wyse 60) already support this facility.
However, the above AiF sequence makes this feature available in all of HostAccess's emulations.

Changing the Screen Fill Character

The space character is normally used for clear screen, clear line and new window operations. This
space character can now be replaced with any character in the standard IBM PC character set.

Host applications may change the fill character as required by using the AiF sequences below.

ESC [= 12 ; nnn h Sets the fill character.

Where

nnn Is the decimal value for the required IBM PC character.

ESC [= 12 l Resets the fill character to a space.

Screen Fill Character Examples

Visually attractive backgrounds to screens and windows can be created with this AiF sequence. For
example, to fill a screen with musical notes as the background, use the following sequences:

Open window (use AiF window sequences and assign window colours)

send to PC 'ESC[=12;014h'

send to PC clear screen code

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 165

Notes: The fill character ONLY applies to the currently open window (or the current screen if no
windows are open).
In general, this facility should only be used for backgrounds. Very effective screens can be created
by using an appropriate fill character over the whole screen and opening a Selection Box (or Input
Box/Window) in the centre of the screen.

After filling a window, close it to turn the fill character off.

C H A P T E R 3 A I F U T I L I T I E S

166 Developer’s Guide

Using Alternate PC Fonts

Terminal emulations generally restrict the range of characters that can be displayed to a selected
subset of the PC Fonts table. There are many occasions when applications need to be able to
display other characters, such as currency, foreign language, scientific symbols and so on.

To display any character from the standard PC Fonts table, use the AiF sequences below.

ESC [= 9 ; n h Switches to the specified font table n.

Where:

 Table Start End Offset

n = 1 032 127 0

 = 2 160 255 -128

 = 3 000 031 32

 = 3 128 159 -64

The character values above are for decimal ranges.

To display any character from within a specified range, the application should switch on the
appropriate font table and display the character for the required character value plus/minus the
offset.

ESC [= 9 l Resets the table back to the terminal font.

PC Font Examples

When presenting choices of selections from a pop-down menu or selection box, it is helpful to be
able to display the PC's up/down arrow key symbols to indicate which keys the user should use.

To do this use the following sequences:

Up_Arrow_display = character value of 2432

Down_Arrow_display = ch aracter value of 2532

send to PC 'ESC[=9;3h'

send to PC Up_Arrow_display at required cursor position

send to PC Down_Arrow_display (next to up arrow)

send to PC 'ESC[=9l'

send to PC " keys to select menu item"

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 167

Note: Emulation specific details such as cursor positions are handled separately from characters to
be displayed on the screen. In general, it is better to switch in to the required font, display the
required characters at defined screen positions and then switch back to the normal terminal font. In
other words, there is no need to switch in to and out of the font for each special character.

Special Output Mode

There are occasions when output to the screen will attempt to address areas of the screen that are
outside of the currently open window.

Host applications may now suppress output to these areas of the screen by using the AiF sequences
below.

ESC [= 5 h Suppresses any screen output addressing areas outside the currently open
window. Output will be continued when the cursor is repositioned to a valid
co-ordinate (i.e. within the current window).

ESC [= 5 l Disables this special output mode.

Special Output Mode Examples

This AiF feature can be useful when ¡GUIising¡ host applications over which one has limited
control. For example, it might be possible to add modules into such an application and make these
modules more presentable by using some of HostAccess's AiF features such as windows, boxes and
so on. However, it is quite possible that core routines within the original application will still insist
on addressing areas of the screen outside the new module's windows, e.g. to display system/error
messages. In these instances it is useful to be able to suppress this screen output which would
otherwise tend to corrupt the display within the new module's AiF windows.

C H A P T E R 3 A I F U T I L I T I E S

168 Developer’s Guide

Centering Text

Any text string can be centred on a given line within the currently open window (or screen, if no
windows are open) without the need for the host application to work out the starting cursor column
address.

Host applications can center text by using the AiF sequence below.

ESC _ Y1 C text ESC \ Centres text within the current window (or screen).

Where:

Y1 Is the row (line) number within the currently open window (or screen) on which the
text should be centred.

C Is the literal capital 'C': AiF code for centre.

text Is the text string to be centred.

Centering text example

Help text for an application might consist of, say, 7 lines held within an array. To display the help
text centred within a window, use the following AiF sequences:

Assign help text array (read from file, etc.):

help_text(1) = 'help line 1'

help_text(2) = 'help line 2'

...

help_text(7) = 'help line 7'

Open the help text window using colours yellow on red:

 send to PC 'ESC[=10;10;17;70; 193;0;1;33;41w'

Loop through the text displaying it:

row = 1

 loop

 until row greater than 7

 send to PC 'ESC_' row 'C' help_text(counter) 'ESC \ '

 row = row 1

 repeat

Wait for user acknowledgement and then close the window (with a window clear option)

Notes: Obviously, text strings wider than the current window (or screen) cannot be centred, but
are truncated to fit within the window.

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 169

Using Macros

HostAccess's macro language enables you to open windows and display messages even before your
users are connected to their host applications. Because macros themselves support AiF sequences, it
is easy to build macros with AiF features such as colour, boxes, and windows.

Any macro may be invoked from a host routine by using the following AiF sequence:

ESC_ s macrotext ESC \

Where:

s AiF delimiter, as a lowercase 's'.

macrotext Is the text of the required macro, with a carriage return char (13) separating each
line.

See Chapter 5 - Using the Macro Language for details on writing macros.

C H A P T E R 3 A I F U T I L I T I E S

170 Developer’s Guide

Keyboard Control Features

You can control loading and modifying the Function Keys available on any standard IBM or
compatible PC Keyboard.

Most applications will normally relieve the user of having to manually program application specific
Function Keys.

HostAccess gives host applications up to 48 programmable Function Keys. Each Function Key may
be individually loaded with any ASCII character sequence, including control characters.

Note: HostAccess supports international keyboard mapping for the USA
and all European countries.

Programmable Function Keys

Any one or all of the forty Function Keys available in HostAccess may be programmed by a host
application to send character sequences to the host as if they were entered from the keyboard.
These character sequences may consist of any ASCII character including control codes.

Programmable Function Key Table

Keyboard Keys AiF Programmable Key Number Keyboard Type

 Normal Shifted Ctrl Alt

Function Keys

 F1 to F10 1 - 10 11 – 20 21 - 30 31 –
40

All

 F11 41 43 45 47 AT

 F12 42 44 46 48 AT

Arrow Keys

 Up arrow 49 53 57 61 All

 Down arrow 50 54 58 62 All

 Left arrow 51 55 59 63 All

 Right arrow 52 56 60 64 All

Edit Keys

 Insert 65 71 77 83 All

 Delete 66 72 78 84 All

 Home 67 73 79 85 all

 End 68 74 80 86 all

 Page Up 69 75 81 87 all

 Page Down 70 76 82 88 all

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 171

Programmable Function Key AiF Sequence

Use the following AiF sequence to program a function key.

ESC_n K Key data ESC \

Where:

n Is the programmable Function Key Number. If this is set to 0 then all
programmable keys will be reset.

Key data Is the character(s) required to be sent to the host when the user presses the
Function. If this string is empty the key n will be reset.

Key. Key data should be entered as normal text (without quotes). Control characters are entered as
^A,^B, etc. Use ^^ for the character '^'.

For characters in the range 128 to 255 enter the three digit decimal value after a '^' e.g. ^128. (Any
character may be entered in this manner, but please note that 7 bit links will not send 8 bit
characters - the top bit will be stripped off).

Examples

To program Function Key 1 to send the word SYSPROG, then a Carriage Return, then the word
MENU followed by another Carriage Return, use this sequence:

ESC_1KSYSPROG^MMENU^MESC \

or:

ESC_1KSYSPROG^013MENU^013ESC \

Programming Control Codes

Notes You can program any character into the function keys by using a top-arrow ̂ followed by a
3 digit number. BACKSPACE for example would be ^008, character 254 would be ^254.

Some useful control codes are listed below:

Programmable Sequence Description Keyboard Input

^I control I Tab

^J control J line feed

^M control M Carriage return

^[control [ESCape

Note that some XT compatible machines may not generate a code for the function keys F11 and
F12, even though these keys may be on the keyboard.

You should be aware of the order of precedence assigned to Function Keys, depending upon how
they have been loaded.

C H A P T E R 3 A I F U T I L I T I E S

172 Developer’s Guide

Toggling Caps Lock On/Off

Host applications may switch the caps lock on or off as required by using the following AiF
sequences.

Toggle Caps Lock AiF Sequence

ESC [= 28 h Toggles Caps Lock on

ESC [= 28 l Toggles Caps Lock off

Switching Scancode Keys On/Off

The PC keyboard has a number of keys that are generally accessible to the user when using DOS
products but are not generally accessible when using host applications. This is simply because there
may not be any matching keys in the terminal being emulated. Virtually all special keys, such as
arrow keys, Page Up/Down, Ins, Del, Ctrl, Alt, etc., are now accessible to host applications by using
the PC Scancode keys facility with the following AiF sequences.

This AiF sequence is available to host applications regardless of what terminal emulation the user
has chosen.

Scancode AiF Sequence

ESC [= 6 ; p h Switches Scancode Keys on.

ESC [= 6 l Switches Scancode Keys off and keyboard inputs revert to the characters that
would normally be returned by the user's current emulation.

p is the scancode prefix as the ASCII decimal value of the character to precede the keyboard
response. The default value of p is zero, but we recommend that p is set to 2 (ASCII character STX,
start of text) so that this is consistent with all of the other AiF sequences that send responses.

The prefix is needed so that applications can easily determine that they should be looking for
Scancode keys when processing user input. When switched on, the user keyboard responses are sent
back to the host in the following format:

scancode_prefix key_scancode

Where:

Scancode_prefix Is the ASCII decimal value of character used as prefix.

Key_scancode Is the ASCII character corresponding to the key depressed by the user. A list
of Scancodes supported is shown below.

Note: some UNIX systems are unable to accept ASCII character value 0 as valid input.

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 173

Scancode Keys

Ranges of keys are specified as from the leftmost key to the rightmost key on one row of the
keyboard. For example, Alt/Q to A/Q to Alt/P is the range of keys generated when the Alt key is
pressed at the same time as one of the following Q,W,E,R,T,Y,U,I,O,P keys.

HostAccess supports the following Scancode keys. Any other key(s) entered by the user whilst
Scancode keys are on are returned in their normal character representation.

C H A P T E R 3 A I F U T I L I T I E S

174 Developer’s Guide

Keytop Legend (keystrokes) Scancode in Hex ASCII Character decimal value

Alt Esc 01 1

Alt Backspace 1E 14

Shift + Tab 0F 15

Alt/Q to Alt/P 10 to 19 16 to 25

Alt [1A 26

Alt] 1B 27

Alt Enter 1C 28

Ctrl 1D 29

Alt/A to Alt/L 1E to 26 30 to 38

Alt/Z to Alt/M 2C to 32 44 to 50

Alt 38 56

Function keys 1-10 3B to 44 59 to 68

Home 47 71

Cursor Up 48 72

Page Up 49 73

Alt Num - (minus) 4A 74

Cursor Left 4B 75

Cursor Right 4D 77

Alt Num + (plus) 4F 78

End 4F 79

Cursor Down 50 80

Page Down 51 81

Ins 52 82

Del 53 83

Shift Function keys 1-10 54 to 5D 84 to 93

Ctrl Function keys 1-10 5E to 67 94 to 103

Alt Function keys 1-10 68 to 71 104 to 113

Ctrl/Print Screen 72 114

Ctrl/Cursor Left 73 115

Ctrl/Cursor Right 74 116

Ctrl/End 75 117

Ctrl/Page Down 76 118

Ctrl/Home 77 119

Alt/1 to Alt/+ 78 to 83 120 to 131

Ctrl/Page Up 84 132

F11 85 133

F12 86 134

Shift F11 87 135

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 175

Keytop Legend (keystrokes) Scancode in Hex ASCII Character decimal value

Shift F12 88 136

Ctrl F11 89 137

Ctrl F12 8A 138

Alt F11 8B 139

Alt F12 8C 140

Ctrl Up Arrow 8D 141

Ctrl Num - (minus) 8E 142

Ctrl Num 5 8F 143

Ctrl Num + (plus) 90 144

Ctrl Down Arrow 91 145

Ctrl Ins 92 146

Ctrl Del 93 147

Ctrl Tab 94 148

Ctrl Num / 95 149

Ctrl Num * 96 150

Alt Home 97 151

Alt Up Arrow 98 152

Alt Page Up 99 153

Alt Left Arrow 9B 155

Alt Right Arrow 9D 157

Alt End 9F 159

Alt Down Arrow A0 160

Alt Page Down A1 161

Alt Ins A2 162

Alt Del A3 163

Alt Num / A4 164

Alt Tab A5 165

Alt Num Enter A6 166

Scancode Keys Examples

To determine if the user has depressed the Function Key F1, regardless of the current emulation
being used and regardless of the possible contents of this function key (which may have been
loaded by this or another application), use the following logical construct:

switch scancode keys on

 send to PC 'ESC[=6;2h'

get_user_input

 input user_response

 if first character of user_response equals ASCII 002 (decimal)

 then

 sc ancode_key = 2nd character of user_response

end if

find out which key has been pressed

C H A P T E R 3 A I F U T I L I T I E S

176 Developer’s Guide

 if scancode_key equals ASCII 059 (decimal) then

 F1_pressed = true

 end if

process keyboard responses

 if F1_pressed is true then

 send to PC "you pressed the F1 key..."

 and so on

Do not forget to switch Scancode keys off just before exiting this routine, with the following
sequence:

 send to PC 'ESC[=6l'

Scancode Keys Notes

It is important to remember to switch Scancode keys OFF when your application exits. If they are
not switched off, other applications may not be able to interpret user input correctly.

You should not switch Scancode keys on and off around individual input statements as this cannot
be done fast enough for typeahead. In general, switch Scancode keys on when entering a routine
and switch off when exiting.

The Scancode prefix has been made a parameter so that you can change this to suit the host system
or network on which their applications are being used.

You can use this with the Page Keys facility of HostAccess to give more flexible keyboard re-
mapping and input.

If Scancode keys mode is on, the scan codes are sent to the host in preference to any other value
associated with that key. Where Function keys are concerned, Scancodes take precedence over host
or user programmed function keys, etc.

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 177

Typeahead Mode

Users tend to like to be able to typeahead when running host applications, particularly impatient
users or users that are familiar with the keystrokes required to get to a defined point within an
application. However, when host applications start to use the AiF menus, selection boxes and field
input modes, the user's typeahead keystrokes may be sent to the host (rather than to HostAccess)
between successive AiF sequences.

To prevent this happening, host applications can switch on a special input mode that enables the
user's typeahead keystrokes to be saved for and used by HostAccess's menus and input modes.

Host applications can switch this mode on by using the AiF sequence that follows.

ESC [= 20 h Switches Typeahead Mode on.

ESC [= 20 l Switches Typeahead Mode off. Any characters within HostAccess's
typeahead buffer will immediately be sent to the host.

Typeahead Mode Examples

The user may know that he/she is about to enter an application that makes use of HostAccess AiF
menus and that two right arrows, then a down arrow, a carriage return and, finally, a Function Key
F5 will select the required menu option and accept the contents of an AiF input box.

By switching Typeahead Mode on, the host application will enable HostAccess's AiF to locally
process all of the user's keystrokes, rather than send them to the host.

Notes

It is important to remember to switch Typeahead Mode OFF. If it is not switched off, other
applications may not be able to interpret user input correctly.

There is a limit of 20 bytes in HostAccess's Typeahead buffer. In practice this is adequate as
processing will almost invariably catch up with the user before the user has been able to type in 20
characters.

If the user presses the break key, HostAccess automatically switches Typeahead Mode off and
flushes the PC's typeahead buffer.

Command Stack Control

HostAccess automatically records user keyboard input into a Command Stack within the PC's
memory. The user is able to recall this Command Stack, modify entries within it (by using the
ALT/ R hot-key) and re-use previously entered (or modified) commands.

Host applications, in general, will not want to fill up the user's command stack with input required
by their applications (such as data entry screens, etc.).

This AiF feature allows a host application to stop keyboard inputs being appended into the
Command Stack and to re-enable this feature (normally on exit from the application).

Host applications can switch this mode on and off by using the AiF sequences below.

C H A P T E R 3 A I F U T I L I T I E S

178 Developer’s Guide

ESC [= 21 h Enables the Command Stack.

ESC [= 21 l Stops HostAccess putting keystrokes into the Command Stack.

ESC [= 21 e Flushes the command stack

Command Stack Examples

The Command Stack has a limited number of entries, so in general, any application that requires
keyboard input should disable the Command Stack in order to preserve the user's commands
entered before invoking the application.

Note: Applications that process user input on a single character basis will tend to add entries into
the command stack until the user enters a carriage return. Such applications should consider
switching the command stack mode off while processing user input, then switch it back on when
the user exits the application or temporarily leaves it through an application's gateway.

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 179

Mouse Control

You can program certain host applications so that users can use a pointing device, such as a mouse,
to interact with host based software.

You can give host applications the ability to monitor mouse movements and button depressions by
the user with the following AiF sequences.

You can also program Hotspots. A Hotspot is a character string on an emulation screen which has
been programmed so that when you move the mouse cursor over the character string and click the
right button, a particular function is activated. If the character string starts with the text “F1”
through to “F12”, the programmed value stored in that function key is returned to the host. If that
character string is not detected, then the first alphanumeric pattern from the left hand edge is
returned with a postfix of Carriage return, so that in the sequence A12B34, the string returned is
“12A”.

Mouse Control AiF Sequences

To detect if a mouse is installed on the user's PC use this AiF sequence:

ESC [= 8 n

The following response will be sent to the host application:

<STX> <CR> code <CR>

Where:

<STX> Is the special Start of Text character (ASCII decimal value 002).

Code Is the mouse install status where:

 0 mouse NOT installed.

1 mouse installed.

<CR> Is carriage return (ASCII decimal value 013).

To activate the mouse or Hotspots and determine which events should be monitored, use the
following AiF sequence:

ESC [= 27 ; n h Switches mouse monitoring or Hotspots ON.

Where:

n Is an integer code that determines which mouse events will be returned to the host,
where:

 1 Monitor Left Button pressed down.

 2 Monitor Right Button pressed down.

 4 Monitor Centre Button pressed down.

C H A P T E R 3 A I F U T I L I T I E S

180 Developer’s Guide

 8 Continuously send mouse addresses whilst a button is depressed.

 16 Switches on Hotspots.

 65 Monitor Left button double click

 66 Monitor Right button double click

 68 Monitor Centre button double click

 128 Monitor Scroll Wheel

Note: Where 16 is used, only 1,2 and 4 will work. If 16 is applied on its own, the mouse will not
work as no button has been supplied.

Either mouse monitoring or hotspots may be enabled but not both. If the value of 16 is seen then
Hotspots will be chosen in preference.

These codes are additive, e.g. to monitor the mouse continuously while the Left button is depressed
set this code to 9.

Format of Events Returned

Mouse events are returned to the host application in the following format:

<STX> MS <CR> button_status , Y1 , X1 <CR>

Where:

<STX> Is the special Start of Text character (ASCII decimal value 002).

MS Is the literal letters 'MS' (AiF code for mouse).

<CR> Is carriage return (ASCII decimal value 013).

Button_status The state of the mouse for this monitored event code in the form an integer,
Where:

0 Only returned if "continuously" monitoring the mouse and then when
the button(s) is/are released.

1 Left button depressed.

2 Right button depressed.

3 Both Left and Right buttons depressed.

4 Centre button depressed.

5 Left and Centre buttons depressed.

6 Right and Centre buttons depressed.

7 Left, Centre and Right buttons depressed.

65 Left button double clicked

66 Right button double clicked

68 Centre button double clicked

128 The Mouse Wheel has been rolled. In this case, Y1 is the number of
detents by which the wheel turned (a positive number indicates that

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 181

the data on screen should appear to move downwards) and X1 is the
number of lines (as configured in Windows) that is suggested to roll
per wheel detent.

Y1 The Y co-ordinate as an integer row value.

X1 The X co-ordinate as an integer column value.

Mouse monitoring and Hotspots should be turned off with the following sequence:

ESC [= 27 l Switches mouse monitoring or Hotspots OFF.

Mouse Interaction Examples

A host based calculator program could be dramatically enhanced by making use of AiF sequences,
including mouse interaction. The basic structure of such a program is outlined below:

Send to PC AiF sequences to "draw" the calculator (boxes, symbols,

etc).

Build map of valid mouse co - ordinates.

Activate mouse and monitor any button with:

send to PC ESC '[=27;7h'

Loop to process user input

input calc_key

if calc_key starts with STX then

input mouse_coordinates

 map mouse co - ordinates into valid calc_key

 end if

assign calc_operand from calc_key

process calc_operand until quit

Please note that in the above example that no check has been made to see if a mouse is installed and
the routine attempts to handle both mouse and keyboard input at the same time by looking for the
special Start of Text character. If this is found, mouse input is assumed to have occurred. If not
found, keyboard input is assumed. Not all applications will need (or wish) to monitor inputs from
both devices at the same time.

Notes: You should be aware that if you monitor mouse events continuously you may "flood" the
host system with data from the mouse, with a detrimental impact on performance and user patience.

It is recommended that applications, particularly those running over asynchronous links or X25
networks, selectively monitor mouse events, e.g. only when the user depresses the left button.

Mouse interaction will automatically work with existing AiF Selection Boxes and Pop-Down Menus.
If a user chooses to use the mouse whilst within an AiF menu, the mouse co-ordinates on the
selected menu option are converted into the appropriate menu co-ordinates. There is no need to
include the above mouse processing AiF sequences within existing AiF menu processing routines.

C H A P T E R 3 A I F U T I L I T I E S

182 Developer’s Guide

Programmable DOS Gateway

The AiF DOS gateway gives host applications the ability to invoke DOS and to run DOS
applications. Upon Exiting from DOS, the user is returned to the host environment exactly where it
was left, with the current screen, backpages, including the AiF menus, etc. intact.

This DOS interface is so crisp that it is possible to seamlessly combine the DOS and host operating
environments.

Programmable DOS Gateway AiF Sequence

To invoke the AiF DOS gateway from a host application use the following sequence:

ESC _ sc ; 0 D Cmd1 ; ... ; Cmdn % keys ; Cmdnn ESC \

Where:

sc Is the screen control code in HostAccess, as follows:

0 Opens, activates and normalises a DOS shell window and executes the DOS
routines within that window.

1 Opens, activates and minimises a DOS shell window.

2 Leave currently active host session screen.

When the DOS commands have been completed, the DOS shell window will be closed and the
HostAccess window will be automatically reactivated.

0 Is the literal 0.

D Is the literal capital letter D.

Cmd1 ..
Cmdnn

If no commands are specified the user is taken to the DOS command line.
Entering EXIT will return the user to the host session. If specified, these
may be any valid DOS commands. Any number of DOS commands may be
strung together using the semi-colon as each command delimiter.

Cmdn % keys If DOS keyboard inputs are required to drive DOS applications then a
special symbol '%' may be appended to a DOS 'command'. This turns on the
DOS Keyboard Stacker and feeds the DOS applications with the keystrokes
it requires. See DOS Keyboard Stacker on page 184 for details.

DOS commands sent by the application from the host should be in the same format as you would
enter them at the DOS command line.

They can consist of DOS operating system commands (such as DIR or CD), program calls (such as
WS for WordStar) or batch file calls.

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 183

DOS Gateway Examples

To change directory to your word-processing directory WP and then run your word-processor, use
the following sequence:

ESC _ 0;9D CD\WP;WP ESC \

As soon as the last DOS command is finished, the host application screen will be returned to. This
may mean that the user will not have an opportunity to read the output of commands such as DIR.
However, DOS has a command called PAUSE which waits until the user hits a key. You can add
this command to your command string to allow the user to read the screen before it is overwritten,
for example:

ESC _ 2;0D DIR;PAUSE ESC \

This lists the contents of the current DOS directory and then waits for the user to hit a key after the
'strike a key when ready . . .' prompt.

C H A P T E R 3 A I F U T I L I T I E S

184 Developer’s Guide

DOS Keyboard Stacker

DOS Keyboard Stacker is a facility within the DOS interface of HostAccess which automatically
places keystrokes into your PC's keyboard buffer and sends them to a DOS application as if they
were being typed in by the user.

Almost any keyboard input may be simulated and delays can be included to overcome problems
caused by DOS applications flushing the keyboard buffer before accepting input. This facility can
be used with the AiF sequences described in the two preceding sections for programmable DOS
gateways and running DOS programs.

Keyboard Stacker Description

Ordinary alphanumeric data, including numbers, punctuation, braces, etc., are stacked by placing
them within single or double quotes on the command line as below:

% "document name"

Keys that do not correspond to a displayable character, for example control keys, are represented by
special two character codes.

Special Keys: Mnemonics

A number of mnemonics are defined to represent certain special keys. These are:

Mnemonic Special Key

LA Left Arrow

RA Right Arrow

UA Up Arrow

DA Down Arrow

PU Page Up

PD Page Down

HM Home

EN End

IN Insert

DE Delete

TA or TB Tab

ST or BT Shift Tab (=Back Tab)

ES Escape

BS Backspace

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 185

Mnemonic Special Key

SP Space bar

CR Enter

LF Ctrl-Enter

DQ The double quote "

SQ The single quote '

These codes can be entered in upper or lower case. You may use spaces between mnemonics to
increase readability. These spaces will be ignored (unless they are between quotes).

Special Keys: Leader Characters

A number of keys (such as Shift, or function keys) can be represented by a special leader character,
followed by a single character qualifier. For example, function keys F1, F2, F3 …F9 are represented
by F1, F2, F3 …F9. Function keys F10, F11 and F12 are represented by F0, FA and FB
respectively.

There will be times when a DOS application program or command will flush the keyboard buffer
before asking for a keystroke. This is to force you to respond or to make sure the response is not
accidental. If you just stack the keys you want, they will also be flushed out. An example of this is
the DOS LABEL command.

You can place a delay into the stack, so the DOS Keyboard Stacker will pause for a specified period
before continuing to insert keys into the buffer, using the command Wnn. For example, to wait
about 2 seconds before putting an ESCape key into the buffer, use:

% W36 ES

Alternatively, to program a wait of about one minute, followed by an ESCape key, use

% W255 W255 W255 W255 ES

It is also possible to insert "pauses" within the keyboard stacker sequences, using the WP, WE and
WB mnemonics, and these wait for user input before activating any subsequent stacked keys.

All these mnemonics are summarised below:

C H A P T E R 3 A I F U T I L I T I E S

186 Developer’s Guide

Character Represents Character Represents

^ Control function. Wnn Wait time in 55 millisecond units (clock
ticks, about 18.2 per second), where nn
is from 1 to 255.

@ Alt function. WP Wait for user key and then pass it on.

 Shift function. WE Wait for user key and then throw it
away.

F Function key WB Wait until key buffer is empty.

S Shift function key BR Break.

C Control Function key.

A Alt Function key

For example, ^C represents Control C, @2 represents Alt/2, and A9 represents Alt/F9.

Special Keys Example

Here is a simple example of a DOS command using DOS Keyboard Stacker. To execute the DOS
TIME command, wait 1 second and then input a time of 12:10 followed by a carriage return, use:

ESC _ D TIME % W018 "12:10" CR ESC \

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 187

Printing to a DOS File or Device

All forms of terminal printing including screen dump, hardcopy and direct (slave) printing are
supported.

Printer output can be generated via an AiF sequence from the Host or from within HostAccess, and
can be directed to a DOS disk file or to a printer on the PC. The print destination can either be set
through the Print Setup... option on the Session menu or from the host application using an AiF
sequence. This destination name will only affect the currently active session.

All terminal emulation protocol specific printing commands are supported, for example McDonnell
Douglas' PORTOUT. However, it is recommended that you use the ANSI sequences given below
as they are supported in all the terminal emulations available (and so applications will only need to
support one set of terminal printing sequences).

Printing AiF Sequences

ESC [= 0 i Print screen to current print device.

ESC [= 4 i Switch OFF direct (slave) printing.

ESC [= 5 i Switch ON direct (slave) printing to current print device.

ESC [= 8 i Closes the printer, even when the keep printer open feature is enabled.

To change the current DOS device for printing for the currently active session, use the following
sequence:

ESC _ L device.name ESC \

Where:

Device.name Is the DOS device or filename into which all print output should be directed
for this session. It could be LPT1, LPT2, COM1 or COM2 if you have a
printer on one of those devices or it could be a DOS file name. To reset to
the default printer use PrintManager.

Printing Examples

To send print data to a printer on parallel port 1 use the following 'code':

SET DEVICE send to PC 'ESC_LLPT1ESC \ '

PRINT ON send to PC 'ESC[=5i'

 send to PC print_data_lines

PRINT OFF send to PC 'ESC[=4i'

To switch printing to the DOS file C:\ PRINT.LST and to append a dump of the screen contents to
it, use the following 'code':

SET DEVICE send to PC 'ESC_LC: \ PRINT.LSTESC \ '

DUMP SCREEN send to PC 'ESC [=0i'

C H A P T E R 3 A I F U T I L I T I E S

188 Developer’s Guide

Notes: Although both ANSI and terminal protocol specific printing commands will be accepted,
direct print On and Off commands should be matched. For example, you cannot use the PRISM
specific command to switch on printing and the ANSI command to switch it off.

If you are using the Host Printing facility of HostAccess's File Services, do not attempt to direct
HostAccess DOS printing to this device.

When printing to a DOS file, this file is always appended to. If this is not required, delete the file
before printing commences. This may be done by using the Erase DOS File AiF sequence (for
more information see the following section).

AiF has an additional 'printing' feature that enables screens to be sent back to the host system (for
details see Capturing Screen Text on page 201.

Printing to a USB Printer

If you wish to direct print output to a USB printer you will need to instruct Windows to map the
USB printer to a given LPT port.

You will first need to share the USB printer and then run the following command:

net use LPT1: \\ServerName\PrinterName /persistent:yes

Where:

ServerName Is the name of the server sharing the printer

PrinterName Is the share name of the printer

Erase DOS File

Host applications that pipe data to DOS files will often need to delete the target DOS file at some
stage within their processing. Applications will want this to happen transparently to the user (i.e.
without the need of invoking the DOS gateway and executing the DOS Del command).

This is easily achieved by using the AiF sequence that follows.

ESC _ E filename ESC \

Where:

filename Is the name of the DOS file to be deleted, including its filename extension and the
full DOS drive:\ path to the file.

Examples

To delete the DOS file called TEMP.DOC in the DOS drive:\ path C:\ HOST, use the following
sequence:

send to PC 'ESC_E C: \ HOST\ TEMP.DOC ESC \ '

Note: Use with care!

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 189

No indication or request for confirmation of the file deletion is given to either the user or the host
application. It is the application's responsibility to verify that the correct file has been deleted, if this
is required. If the DOS file to be deleted does not exist, control is simply returned uninterrupted to
the host application.

See Verify DOS File or Directory Exists on page 192 if you need an AiF sequence to verify the
existence of a DOS file.

C H A P T E R 3 A I F U T I L I T I E S

190 Developer’s Guide

Request HostAccess DOS Run Directory

Host applications can request that HostAccess tells them from which DOS directory HostAccess is
running.

It is often useful for host applications to be aware of the current run-time DOS path so that this can
be used to store temporary DOS files, for example, when automating file transfer.

This can be achieved by using the following AiF sequence:

ESC [= 9 {; code} n

Where:

Code 0* = Working directory, long file name format

 1 = Installation directory, long file name format

 2 = Temp directory, long file name format

 8 = Working directory, short file name format

 9 = Installation directory, short file name format

 10 = Temp directory, short file name format.

Note: Long file name support is available to both the 16 and 32-bit versions of HostAccess, but
only on Windows 95/98 and NT.

HostAccess responds with the following message:

<STX> <CR> path <CR>

Where:

<STX> Is a special start of text character (ASCII decimal value 002).

path Is the full DOS drive and path to the HostAccess run-time directory, e.g.

 C:\ HOSTACC\ HOST.EXE

<CR> Is a carriage return (ASCII decimal value 013).

Examples

To request the current HostAccess run-time directory, use the following sequence:

send to PC 'ESC[=9n'

loop input response until response equals STX do repeat

input pc_path

DOS_run_drive = first two characters of pc_path

DOS_run_directory = all characters after the last " \ "

delimiter

in the pc_path string

Note: Remember that the current DOS session drive and path may be changed in a number of ways, by other
AiF sequences, or by the PC user. This sequence is useful for host applications that need a consistently valid

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 191

DOS path for operations such as file transfer to DOS.Refer to the following section if you need an AiF
sequence to verify the existence of a DOS file.

Request HostAccess System Information

This AiF sequence may be used to find out more information about the system running
HostAccess.

Use the following sequence to get the HostAccess System Information:

 ESC _ 84 ; type w {variable} ESC \

Where:

type The type of information HostAccess should return:

1. Printer Information

2. Date and Time

3. Date

4. Time

5. Computer Name and User Name

6. Computer Name

7. User Name

8. Environment Variable

variable The environment variable. Used only when type = 8.

This returns:

<STX> <CR> data <CR>

Where:

<STX> Is the start of text character (ASCII decimal value 002).

<CR> Is carriage return (ASCII decimal value 013).

data Is the data returned e.g. Computer Name, User Name, Date and/or Time etc

C H A P T E R 3 A I F U T I L I T I E S

192 Developer’s Guide

Verify DOS File or Directory Exists

Host applications that manipulate DOS files (e.g. through HostAccess's file transfer, FORMs or
direct print facilities) often need to check the existence of the target DOS file at some stage within
their processing. Applications will want this to happen transparently to the user.

This is easily achieved by using the AiF sequence that follows.

ESC _ G path ESC \

Where G is the capital letter 'G'.

path Is the name of the DOS file or directory to be verified, including its filename extension
and the full DOS drive:\ path to the file.

HostAccess answers this inquiry with a response in the following format:

<STX> <CR> code <CR>

Where:

<STX> Is the start of text character (ASCII decimal value 002).

<CR> Is carriage return (ASCII decimal value 013).

Code Is an integer code that answers the verification request as one of the following: 0
(DOS path does not exist), 1 (DOS File exists) or 2 (DOS Directory exists).

Verify DOS File Examples

To verify the DOS file called TEMP.DOC in the DOS drive:\ path C:\ HOST, use the following
sequence:

send to PC 'ESC_G C: \ HOST\ TEMP.DOC ESC\ '

loop until input_string equals STX do repeat

input response

if response equals 0 print "File does NOT exist !!"

if response equals 1 print "File exists"

if response equals 2 print "TEMP.DOC is a DIRECTORY !!"

Note: HostAccess verifies the existence of either a file or a directory dependent upon the DOS
path specified.

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 193

Data Extraction to DOS and Windows

We have developed for PICK users a sophisticated and powerful tool for automatically sending
PICK data to almost all DOS and Windows packages such as WORD, EXCEL, LOTUS,
WordPerfect, SuperCalc, QUATTRO etc.

These routines now give developers the ability to integrate data seamlessly from PICK databases
into DOS and Windows packages.

Consequently, there are many users today who are able to use PICK's query language to retrieve
data and then pass this data directly into a DOS or Windows spreadsheet, automatically adjusting
column widths and headings as the user is taken into the spreadsheet - and all of this by simply
selecting a menu option on the PICK host!

UNIX users are provided with the file transfer facilities to enable them to extract and retrieve data
to/from DOS files.

The following topics describe the AiF sequences used for communication with other Windows
applications, and for monitoring their status. For details of AiF sequences to use within Dynamic
Data Exchange, see Chapter 4 - Dynamic Data Exchange.

C H A P T E R 3 A I F U T I L I T I E S

194 Developer’s Guide

Displaying Images

HostAccess uses a separate Windows program to display images. Images are displayed within their
own window which can be moved, re-sized, maximised, or minimised by the user, as required.

The Display Images program can be invoked using the Start Windows Program sequence (described
later in this section), using the following command line parameters.

Displaying Images AiF Sequence

Use the following sequence to display an image:

IMAGE /I filename {/T title} {/Z zoom} {/F}

Where

IMAGE Is the name of the image display program (IMAGE.EXE) which will have been
installed into the directory in which HostAccess was installed.

/I Is the command line flag indicating that an image filename will be specified. This flag
must be followed by a space.

filename Is the full path and filename for the .PCX image file. There is no need to specify the
.PCX suffix.

/T Is the optional command line flag indicating that a title will be specified. This flag must
be followed by a space.

title Is an optional title that will be displayed in the Application Name bar. If omitted,
"Image [Filename]" will be used.

/Z Is the optional command line flag indicating that a zoom factor will be specified. This
flag must be followed by a space.

zoom Is the zoom factor as a percentage of the image's size. The default is 100 (same size).
The zoom factor can be any number greater than 0, such as 25 (¼ size), or 200 (x2
size).

/F Specifies that the image is to fit into the size of the image display window. If specified,
this means that if the user changes the image display window size, the image will
automatically be scaled to fit as best as possible.

Displaying Multiple Images

You can display more than one image on the same screen at the same time. To achieve this, simply
send another AiF sequence for the next image, changing the scale as required (and before waiting
on input for the response).

There is no limit to the number of images that can be displayed in this manner, simply repeat the
AiF sequence for each image. It is often useful to decrease the size of these images by setting the
'scale' parameter to 50 (half size) or less.

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 195

Please note that multiple images can only be displayed on the same screen if they all have identical
palettes. Images with different palettes will 'corrupt' each others' screen image (often giving an
"infra-red" like display).

Users displaying images will see the images displayed using the resolution and colours as per the
current Windows desktop.

Closing the Image Application

This AiF sequence closes a Windows application and should be used to close Windows that are
displaying images.

This sequence should be used with great care. Close Application is only intended for use with
Windows applications that do not support DDE. If an application supports DDE, we strongly
recommend that you use a DDE link to close the application.

ESC_x AP ESC \

Where _x is AiF code, and AP is the name of the Windows application that is to be closed.

Note: this name should exactly match the name displayed in the application's title bar. This name is
not case sensitive but it is sensitive to other factors, such as double spaces, curly brackets, etc.

Closing the Image Application Example

To close the image opened in the previous example, you could use the following sequence:

ESC_x United Kingdom ESC \

Note: The host application should close down image windows when appropriate. Please bear in
mind though, that the user also has this capability. Images may be removed from the user's desktop
by using the Close Image Windows Application sequence (described above). Make sure that you
specify the correct image window by using the exact name of the window, which will be either
"Image [filename]" or "title", if a title was specified when the image was invoked.

C H A P T E R 3 A I F U T I L I T I E S

196 Developer’s Guide

Control State of Window

This AiF sequence provides control over the window state (Minimise, Maximise etc.) of a given
application already running on the Windows desktop.

ESC _ ST c AP ESC \

Where:

ST Changes the State of the application's window as follows:

 1 – Activates and displays the window.

 2 – Activates and minimises the window.

 3 – Activates and maximises the window.

 7 – Displays the window minimised but does not change active window.

c Is lowercase c - AiF code.

AP Is the name of the Windows application. Normally this is the name held in the window
Title as shown exactly on the desktop, i.e. WordPerfect [DOCUMENT1 –
UNMODIFIED] If AP is null, the state change will affect the current window.

Control Window State Response Format

The response will be

<STX> <CR> status <CR>

Where:

<STX> Is the start of text character (ASCII decimal value 002).

<CR> Is a carriage return (ASCII decimal value 013).

status Is the task number which is 0 if the application does not exist.

Note: It is recommended that you use DDE if it is available and practical because using the server
name is more accurate and reliable than depending on the Application Name.

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 197

Start Windows Program

Use this sequence to allow any Windows program to be started on the desktop:

ESC _ ST e PN ESC \

Where:

ST Is the state in which you want the Windows program to be started:

 1 Activates and displays the window.

 2 Activates and minimises the window.

 3 Activates and maximises the window.

 7 Displays the window minimised but does not change active window.

e Is lowercase e - AiF code.

PN Is the name of the Windows program that you wish to start e.g. 123W or
D:\ 123W\ 123W (If .EXE is omitted, it is assumed). If you do not specify a drive
and/or path, the Windows application will be searched for in the following sequence:

 1 Look in current directory.

 2 Look in the Windows directory.

 3 Look in the Windows SYSTEM directory.

 4 Look in the directories specified in the PATH variable

 5 Look in the directories mapped in a network.

You can also specify startup parameters here. For instance:

d:\ 123W\ 123W DEMO.WK3

to start 123 for Windows and open DEMO.WK3 worksheet.

Start Windows Program Response Format

The response will be:

<STX> <CR> status <CR>

Where:

<STX> Is the start of text character (ASCII decimal value 002).

<CR> Is a carriage return (ASCII decimal value 013).

status Is the task number of the application. If it is < 32 the application was not started.

C H A P T E R 3 A I F U T I L I T I E S

198 Developer’s Guide

Detect if Windows Application Running

Use this sequence to ascertains whether or not a Windows application is running:

ESC _ a AP ESC \

Where:

a Is lowercase a - AiF code.

AP Must be the name of the Windows application. Normally this is the name held in the
Window Title as shown exactly on the desktop, e.g.WORDPERFECT [DOCUMENT1 –
UNMODIFIED].

Detect Windows Application Response Format

The response will be

<STX> <CR> status <CR>

Where:

<STX> Is the start of text character (ASCII decimal value 002).

<CR> Is a carriage return (ASCII decimal value 013).

status Is the task number which is 0 if the application is not running on the desktop.

Note If the application supports being a DDE server, it is recommended that you use the ESC_ld
SN;TP ESC\ sequence (Initiate DDE) to detect whether that server application is active or not,
because using the server name is more accurate and reliable than depending on Application Name.

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 199

Send Keys to Windows Applications

This sequence sends keys in the DOS keyboard stacker format to the specified Windows application
AP. This allows almost any Windows application to be driven automatically.

There is no conversation taking place between HostAccess and the Windows product to which you
are sending keys, so you have no way of validating that the keys have been accepted by the other
product. We recommend that you at least validate that the other application is running before you
attempt to send keys. To do this, you can use either the AiF sequence Detect if Windows
Application is Running (described earlier), or the sequence Initiate DDE see Dynamic Data
Interchange.

ESC _ k AP % keys ESC \

Where:

k Is lowercase k - AiF code.

AP Must be the name of the Windows application. Normally this is the name held in the
window Title as shown exactly on the desktop, e.g.

 WORDPERFECT [DOCUMENT1 - UNMODIFIED]

 If AP is null, keys are sent to the current window.

% Is an AiF delimiter.

keys In the same format as the DOS keyboard stacker (see DOS Keyboard Stacker on page
184 for details).

You should use DDE if it is available and practical, as using the server name is more accurate and
reliable than using the Application Name.

C H A P T E R 3 A I F U T I L I T I E S

200 Developer’s Guide

Miscellaneous AiF Facilities

The following topics document several of the miscellaneous but often very important features
within AiF.

For additional or modified AiF features, please contact your dealer or Rogue Wave directly. We
have a policy of incorporating user feedback directly into future releases where these requests fall
within the general development strategy. (For details of the latest enhancements available in
HostAccess, refer to the READ.ME file on the HostAccess disk).

Closing HostAccess From Host

An AiF sequence is available to close HostAccess. This feature allows application developers to
include 'close HostAccess' in their application menus.

HostAccess will NOT ask the user to confirm the close request as would be done if ALT/X was
entered from the keyboard.

The user will be returned straight to DOS and without any warning if the HostAccess parameters
have been changed.

Closing HostAccess From the Host AiF Sequence

Use the following AiF sequence:

ESC _ X ESC \

Notes: After closing HostAccess the application should normally close the host process that was
driving HostAccess.

This AiF sequence is often used in conjunction with automated File Transfer to or from the host
but initiated from the PC through the use of HostAccess's Macro Language. It enables the PC to
process file transfer(s) remotely, logoff the host session and then exit HostAccess to return to the
controlling DOS process (batch file).

For more information on the macro language, please see Chapter 5 - Using the Macro Language.

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 201

Getting HostAccess Run-time Status

This AiF sequence may be used to find out more information about HostAccess and its run-time
environment.

Use the following sequence to get the HostAccess Run-time status:

ESC [= 10 n

This returns:

<STX> <CR> a;b;c;d <CR>

Where:

<STX> Is the start of text character (ASCII decimal value 002).

<CR> Is a carriage return (ASCII decimal value 013).

a 1 if Windows version running or 0 if DOS version.

b 1 if current PC is colour, 0 if mono.

c 1 if blinking is enabled on PC, 0 if not.

d 1 if this PC has a mouse that HostAccess can use, 0 if not.

Note This sequence combines several AiF sequences into one. In time, we will extend the
information returned by this sequence, and for this reason we recommend that developers use this
sequence in preference to the individual sequences to get serial number, blinking status, etc.

Capturing Screen Text

As well as being able to dump the current screen text to an attached local printer or to a DOS file,
you can also send that same screen text up to the host. This screen text can then be sent on to the
system printer, saved in a file or indeed used anywhere else on the host system.

Upon sending the appropriate sequence, the PC will send the screen text back to the host. Each line
of the screen is sent to the host with all non-printable characters replaced by spaces and terminated
by a carriage return.

C H A P T E R 3 A I F U T I L I T I E S

202 Developer’s Guide

Capturing Screen Text AiF Sequence

Use the following AiF sequences to capture screen text.

ESC [= 2 i

or

ESC [2 ; n i

Where:

n Is the optional parameter determining which screen is sent to the host, as:

 HostAccess returns the screen to the host with each line separated by a carriage return
and adds a leading and trailing start of text (ASCII value 002) character. The format of
the reply to this AiF sequence is:

 <STX> <CR> line1 <CR> line2 <CR> ... lineN <CR> <STX> <CR>

 Where:

 <STX> Is the start of text character (ASCII decimal value 002).

 <CR> Is a carriage return (ASCII decimal value 013).

 line1 ... lineN Is each line of the screen. The number of lines will vary depending
upon the current screen configuration.

Capturing Screen Text Example

As each line of the screen is terminated by carriage return, a simple program can be written to
retrieve each line of the screen image into an array.

For example:

screen = ""

counter = 1

send to PC 'ESC[=2i'

echo off

loop input resp until resp equals STX do repeat

loop

 input line

until line equals STX do

 screen(counter) = line

 counter = counter 1

repeat

echo on

display counter:"screen lines sent to host"

Notes: Host echoing of terminal input must be switched off before requesting the screen image.
Otherwise, the user's application screen will be corrupted.

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 203

This feature can be very useful for documenting applications screens as well as giving users the
ability to capture any screen at any time back to the host system.

Another method of (automatically) sending the host session's screen back to the host would be to:

1. Assign the DOS Print device to a DOS file name.

2. Send the ANSI sequence to "print screen"

3. File transfer the DOS file up to the host.

This method may be simpler in some circumstances and would enable you to capture IBM graphics
within the screen.

Changing Emulation

In some applications areas it may be useful to be able to change the current terminal type that
HostAccess is emulating. A special AiF sequence is provided for this.

ESC [= n {

Where:

n is the emulation number for the required emulation as follows:

0 VT100 11 SM 9400

1 VT220 (7 bit) 12 Ansi

2 VT220 (8 bit) 13 Videotex

3 Prism8/9 14 Microfusion

4 Prism9 Ansi 15 Ampex

5 QVT119 16 TV1920

6 Wyse50 17 Galileo

7 Wyse60 { The literal character '{'.

8 AddsVp

9 UCL Term

10 DG 216

Changing Emulation Example

Applications which invoke other applications specifically enhanced for different terminals can now
swap between the required emulation. In practice, this only occurs very rarely. However, we do
know of one application that was built around one terminal type but has later been enhanced to call
another "word-processing" application that was specifically targeted for a different terminal type.

Notes: Changing emulations will effectively reset the terminal, wiping out all previous backpages,
screens, slots etc. If the previous environment needs to be saved, use the AiF sequence to "push
environment", in Save Environment on page 147.

C H A P T E R 3 A I F U T I L I T I E S

204 Developer’s Guide

File Transfer

Use the following AiF sequence to start a file transfer:.

ESC _ mode ; hostdriven ; 1; append ; 0 ; protocol ; ist ; direction local ;

Remote {; FTP server} {; username} {; password} ESC \

Where:

Mode 0 = binary.

 1 = text.

hostdriven 0 = Displays progress dialog during the transfer. User
must close the dialog manually once the transfer is
complete.

 1 = Displays progress dialog during the transfer and
automatically closes the dialog once the transfer is
complete (DOS.PICK Flag = H).

 2 = Suppress all progress output (DOS.PICK Flag = Z).

append 0 = Overwrite destination file.

 1 = Append to destination file.

Note: If using protocol number 9, this parameter is
ignored.

protocol 0 = Proprietary.

 1 = Kermit.

 2 = X/Ymodem.

 3 = Zmodem.

 9 = FTP

ist 0 = Transfer is to local PC file (normal).

 1 = Intersession file transfer.

Note: If using protocol number 9, this parameter is
ignored.

direction { = Send file to host.

 } = Receive file from host.

local Filename on the PC.

Remote Filename on the host.

ftp server The FTP server address.

A I F U T I L I T I E S C H A P T E R 3

Developer’s Guide 205

Note: Only relevant when using protocol 9.

username The username to be used when connecting to the FTP
server.

Note: Only relevant when using protocol 9.

password The password for the username above

Note: Only relevant when using protocol 9.

For example:

ESC_1;0;1;0;0;3;0{c: \monkey.txt;pig ESC\

Will start a Zmodem file transfer to send the file 'c:\ monkey.txt' on the PC to the file 'pig' on the
host.

FTP example:

ESC_0;2;1;0;0;9;0;}c: \dn\drivers.zip;/services/technet/drivers.zip;ftp.microsoft.com;anonymous;

passwordESC \

Will download the binary file '/services/technet/drivers.zip' from the ftp.microsoft.com ftp server
into the local file ‘c:\ dn\ drivers.zip’. No progress dialog will be displayed.

Developer’s Guide 206

Chapter

4
Dynamic Data Exchange

The following topics how DDE works and summarise the DDE Escape sequences. They explain
how you can use DDE with HostAccess, DDE Client support and DDE Server support.

How DDE Works

Dynamic Data Exchange (DDE) is used to transfer data between Windows applications.

Two applications that participate in DDE engage in what is known as a DDE conversation. The
application that initiates the conversation is known as the client application, and the application
that responds to the client is known as the server application.

Any Windows product that supports DDE as a server application must have a server name. For
example, the server name for Word for Windows is WINWORD and for Quattro Pro it is QPW.
To initiate a DDE link with a server application, you would normally use the server name and this
would return a channel number. Using this channel number you would then send commands
(normally in the format of the macro language supported by that server application) and finally close
the link with that channel number when all processing is completed.

When communicating with a server you must also always specify a topic. Server applications can
support many topics depending on which part of that application you want to communicate with.
For instance, if you want to request information from Quattro Pro on a specific spreadsheet, the
server name would be QPW and the topic name would be the spreadsheet name.

DDE was designed to form a standard way of communicating between Windows applications.
However, the fact that each Windows application supports DDE differently (or sometimes not at
all) makes it more difficult for the novice to understand it or become involved with it.

If you want to program using DDE, you will have to learn as much, if not more about the server
application that you want to talk to, rather than if you were a direct user of the product itself.

D Y N A M I C D A T A E X C H A N G E C H A P T E R 4

Developer’s Guide 207

DDE Sequences: Summary

ESC _9d SN;TP ESC \ Close a DDE link already established with Initiate DDE
sequence.

ESC _ 2 ; TM d SN ; TP ; MA ESC \ Send commands to server application.

ESC _ 1d SN;TP ESC \ Open a DDE channel with a server.

ESC _ 3; TM d SN;TP;IT;ST ESC \ Pass data to server.

ESC _ 4; TM d SN;TP;IT ESC \ Retrieve data from server.

Using DDE with HostAccess

You can use DDE to use HostAccess as a DDE client to other Windows applications (servers),
sending data and instructions from the host to a Windows application. This gives your own host
programs and applications almost total control over any other Windows product.

Using DDE with HostAccess, you only need to specify the server name for any DDE process.
HostAccess automatically keeps track of channel numbers internally for you.

All Windows applications support a general topic name system. Unless you are setting up more
complicated DDE links, this topic should be more than adequate for most developers. (All of the
HostAccess PASS.TOs for Windows use the SYSTEM topic).

You can also use DDE to use HostAccess as a DDE server. You can write Windows programs in
such applications as Word or Excel, which can send and receive data to and from the host software.

Note: You must have a resilient link from the PC to the host. DDE cannot work remotely unless
full flow control and error checking are in place.

C H A P T E R 4 D Y N A M I C D A T A E X C H A N G E

208 Developer’s Guide

DDE Client Support

The following topics describe the AiF sequences used to connect, communicate, and disconnect
between client and server applications in a DDE environment.

You should have a full knowledge of DDE before using these features.

Initiating a DDE Conversation

To open a DDE channel with a Windows application, use the following AiF sequence:

ESC _ 1d Server ; Topic ESC \

Where:

Server Is the Server name of the application.

Topic Is the Topic for that application.

If a link is already open to this server and topic it will be re-used.

DDE Response Format

The DDE initiate response will be:

<STX> <CR> status <CR>

Where:

<STX> Is the start of text character (ASCII decimal value 002).

<CR> Is a carriage return (ASCII decimal value 013).

status Is 0 if successful and > 0 otherwise, as follows:

1 - Application link not open (no initiate).
2 - Timeout.
3 - Topic not supported by application.
4 - No DDE channels available.
5 - Server closed.
6 - Server busy.
7 - Server NAK (Not Acknowledge).

D Y N A M I C D A T A E X C H A N G E C H A P T E R 4

Developer’s Guide 209

Sending Commands to the Server

To send commands to the server application (to allow it to be driven and updated automatically),
use the following sequence:

ESC _ 2 ; Timeout d Server ; Topic ; Mstring ESC \

Where:

Timeout If used sets the timeout on DDE commands to that number of seconds. If a DDE
macro being passed is going to take a long time it is sometimes worth using a high
value to stop the DDE terminating on a timeout (NAK).

Server Is the Server name.

Topic Is the Topic name, normally SYSTEM.

Mstring Is the macro string in the format expected by the DDE server application.

A successful DDE Initiate must have been made with Server name and Topic before the macros can
be sent.

For example:

[FileOpen.Name = "C:\WINWORD\TEST.DOC"][FileOpenDataFile.Name etc.,]

or

{FileOpen C:\QPW\TEST.WB1}{COLUMNWIDTH A1..C20,1,2,3}{etc.,}

Multiple macro commands may be passed using the above square brackets to separate each macro
command. Some products (like Quattro Pro) seem to prefer curly square brackets rather than
normal square brackets like most other Windows applications. Please check the documentation for
the Server Application if normal square brackets do not work.

Response Format

The DDE initiate response will be

<STX> <CR> status <CR>

Sending Data to a Server (Poke)

This sequence allows data to be passed directly to another Windows application (the server). Most
DDE servers have defined elements (items) that the server knows about, which can accept data
from DDE clients. For example, R1C1 is the item name for some spreadsheet packages.

A successful DDE Initiate must have been made with Server name and Topic before the data can
be sent.

C H A P T E R 4 D Y N A M I C D A T A E X C H A N G E

210 Developer’s Guide

ESC _ 3; Timeout d Server ; Topic ; Item ; String ESC \

Timeout If used sets the timeout on DDE commands to that number of seconds. If a DDE
macro being passed is going to take a long time it is sometimes worth using a high
value to stop the DDE terminating on a timeout (NAK).

Server Is the Server name.

Topic Is the Topic name, normally SYSTEM.

Mstring Is the macro string in the format expected by the DDE server application.

Item Is the Item name recognised by the DDE server.

String Is the string of data to put into IT specified above.

The response will be:

<STX> <CR> status <CR>

Requesting Data from a Server

This sequence allows data to be retrieved directly from another Windows application (the server).
Most DDE servers have defined elements which the server knows about (called items) where
specific pieces of information reside.

A successful DDE Initiate must have been made with Server name and Topic before the data can
be retrieved.

ESC _ 4; Timeout d Server ; Topic ; Item ESC \

where Timeout, Server, Topic and Item are as defined above.

The response will be

<STX> <CR> status <CR> string <CR>

string is the data held as returned from the Server application. The data may be tabbed or comma
delimited, dependent on the server application.

Close DDE Link

This sequence closes a DDE link already established with the Initiate DDE sequence. It is
recommended that you close DDE links when any DDE conversation is completed.

ESC _9d SN;TP ESC \

Where

SN Is the Server name.

TP Is the TOPIC of the DDE session to close conversation with, normally SYSTEM.

DDE Server Support

D Y N A M I C D A T A E X C H A N G E C H A P T E R 4

Developer’s Guide 211

You can use HostAccess to act as a DDE server to Windows applications such as Word and Excel,
sending data to the host, receiving data from a host and allowing the Word or Excel application to
obtain the results.

Any Windows product that supports DDE as a server application must have a server name. In
HostAccess’s case this is:

Servername: HA7

The following operations are supported:

DDE Requests:

Topic System

Items Topics Returns a list of available topics

 Formats Returns a list of supported formats

 SysItems Returns a list of supported items
for this topic

Topic Session name

Items CursorPos Returns the current cursor location

 ScreenSize Returns the current screen size

 RyCxNc Returns text from screen
(RxCxNx) where R=row,
C=column, N=no. of characters to
read

 Items Returns a list of supported items
for this topic

DDE Execute:

Topic Session name

Items <Empty> Executes a macro or macro
command. To execute a macro,
supply the path to the macro file.
To execute a macro command pre-
fix the command with * e.g.
*PRINT “Hello World”

DDE Poke:

C H A P T E R 4 D Y N A M I C D A T A E X C H A N G E

212 Developer’s Guide

Topic Session name

Items Keys Send keys as if they were typed on
the keyboard. These are in the
mnemonic format as described in
the mnemonic key code table e.g.
CR for carriage return, ES for
ESCape, F1 for function key 1, etc.

 Network Send data to the host

DDE Example

The following WordBasic example provides a list of the available system items, topics and formats
supported by the application:

Sub MAIN

 DDETerminateAll

 n = DDEInitiate(ñHA7ò, ñsystemò)

 a$ = DDERequest$(n, ñSysItemsò)

 MsgBox(a$, ñSysItemsò)

 b$ = DDERequest$(n , ñTopicsò)

 MsgBox(b$, ñTopicsò)

 c$ = DDERequest$(n , ñFormatsò)

 MsgBox(c$, ñFormatsò)

 DDETerminate n

End Sub

Some applications that support DDE: Microsoft Word for Windows, Excel, Visual Basic.

Developer’s Guide 213

Chapter

5
Using the Macro Language

The HostAccess macro language is a simple and powerful tool that allows you to automate standard
tasks. For example, you can use the macro language to automate your login procedure, or to call a
Windows application and run a set of tasks within it.

This chapter describes all the features provided in the macro language, and how to use each one.

The example provided at the end of this chapter demonstrates the power of the macro language.

This documentation assumes that you are familiar with basic programming concepts, such as loops,
variables, expressions and commands.

Syntax Conventions

Each command described has an associated syntax diagram, to help you understand the exact usage
of the command. These diagrams should be intuitively clear. In case of confusion, refer to the
following table for explanations of the conventions used:

Symbol Meaning

>Ƅ Start of a command.

>> Continuation character.

Ƅ>< End of a command.

| New line.

ƄƌƄ A ƄƌƄ

 ƈƄ B ƄƉ
Either A or B must be chosen.

ƄƌƄƄƄƄƄƌƄ

 ƊƄ A ƄƋ

 ƈƄ B ƄƉ

Either A or B may be chosen.

 <<<

Ƅ A Ƅ
A may be repeated.

 <,<

Ƅ A Ƅ
As above, but each repetition must be separated by a comma

C H A P T E R 5 U S I N G T H E M A C R O L A N G U A G E

214 Developer’s Guide

Commands are described in upper case (and emphasised in bold in the syntax diagrams).
Variables, procedures and functions are described in lower case. The macro language itself is
case-sensitive for variables, procedures and function names, but not for command statements.

Using AiF Escape Sequences

You can use the macro language to send and receive AiF escape sequences.

AiF escape sequences are normally sent from the host to the PC, and replies are returned from the
PC to the host. Under some circumstances, however, you may want to control the operations
entirely from the PC; for example, when you have no control over a host program.

Use the PRINT command to send an AiF escape sequence, and the INPUT command to read a
reply from the AiF.

Declaring Variables

Before using a variable, you must declare it. To declare a variable, use one of the following
statements:

Â DIM : for local declarations.

Â GLOBAL : for global declarations. Global variables must be declared, and survive between
macro programs and HostAccess sessions. Therefore, we recommend you limit the number
of global variables declared.

Examples

DIM a, b, c AS INTEGER

GLOBAL name AS STRING

Syntax

 << , <<<

>ƄƄƌƄ DIM ƄƄƄƄƌƄ variable ƄƄ AS ƄƌƄ INTEGER ƄƌƄƄƄƄƄƄƄƄƄƄ><

 ƈƄ GLOBAL ƄƉ ƈƄ STRING ƄƄƉ

U S I N G T H E M A C R O L A N G U A G E C H A P T E R 5

Developer’s Guide 215

Using Functions

Use a function as an expression, which returns a value. Define functions with the FUNCTION ...
END FUNCTION command, and call them as expressions.

Example

FUNCTION squareadd(b AS INTEGER,c AS INTEGER) AS INTEGER

REM returns the square of two parameters b and c

 squareadd=b*b + c*c

END FUNCTION

 :

 :

LET a = squareadd(14,6)

Syntax

>Ƅ FUNCTION name ƄƌƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƌƄ AS type | ƄƄƄƄƄƄ>>

 ƈƄ (ƌƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƌ) ƄƉ

 ƅ <<<<<< , <<<<<<< ƅ

 ƈƄ variable AS type ƄƉ

 <<<< , <<<<

>>ƄƄ declaration ƄƄ name = expression ƄƌƄƄƄƄƄƄƄƄƌƄ | END FUNCTION Ƅ><

 ƈƄ code ƄƉ

C H A P T E R 5 U S I N G T H E M A C R O L A N G U A G E

216 Developer’s Guide

System Functions

Following are descriptions of the system functions available with the macro language.

Name Purpose Call As

Chr$ Converts integer to string character. Chr$(n)

Field$ Returns the nth item from the string list, where each
item is separated by the string s.
For example, Field$(“Hello;world”, “;”, 2) =
“world”.

Field(list,s,n)

Id$ Used with the INPUT command. Id$(string)

Index Returns the starting character position of string2
within string1. 0 is returned if string2 is not found
within string1.
For example, Index(“hello world”, “world”) = 7.

Index(string1,string2)

Left$ Returns the n leftmost characters of string. Left$(string,n)

Len Returns the number of characters in a string. Len(string)

Lower$ Returns every character within the string as lower
case.

Lower$(string)

Ltrim$ Returns string argument without leading spaces. Ltrim$(string)

Mid$ Returns (m characters of) the string from character n
onwards.

Mid$(string,n) or
Mid$(string,n,m)

Reply$ Used with the INPUT command. Reply$(string)

Right$ Returns the n rightmost characters of string. Right$(string,n)

Rtrim$ Returns string argument without trailing spaces. Rtrim$(string)

Screen$ Returns the word found from the screen at x,y. If x
is set to 0 the whole line will be returned.

Screen$(x,y)

Trim$ Returns string argument without trailing or leading
spaces, and collapses multiple spaces.

Trim$(string)

Upper$ Returns every character within the string as upper
case.

Upper$(string)

Val Returns the numeric value of a character string. Val (string)

U S I N G T H E M A C R O L A N G U A G E C H A P T E R 5

Developer’s Guide 217

Name Purpose Call As

Waitkey$

Waits for user to press a key, then returns that key as
a string.

Waitkey$

C H A P T E R 5 U S I N G T H E M A C R O L A N G U A G E

218 Developer’s Guide

Using Procedures

Call procedures to perform specific discrete actions, and then return to the calling point in the
program. Define procedures with the SUB ... END SUB command, and call them using the CALL
command.

To terminate a procedure (for example, on an error), use the EXIT SUB keyword. This returns
control to the calling program.

Example

SUB greet(name AS STRING)

 PRINT ñHello World fromò;name

END SUB

 :

 :

CALL greet (ñDavid B.ò)

Syntax

 <<<< , <<<<<<

>Ƅ SUB name ƄƄƌƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƌƄ | declaration | ƄƄƄ>>

 ƈƄ (ƌƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƌ) ƄƉ

 ƅ <<<<<< , <<<<<<< ƅ

 ƈƄ variable AS type ƄƉ

>>ƄƄƌƄƄƄƄƄƄƄƄƌƄƄƌƄƄƄƄƄƄƄƄƄƄƄƄƌƄƄƌƄƄƄƄƄƄƄƄƌ | END SUB ƄƄƄƄƄƄƄƄƄƄƄƄƄƄ><

 ƈƄ code ƄƉ ƈƄ EXIT SUB ƄƉ ƈƄ code ƄƉ

U S I N G T H E M A C R O L A N G U A G E C H A P T E R 5

Developer’s Guide 219

Macro summary

Command Description Example

CALL Calls a (previously-defined)
procedure.

CALL SubProcedure()

DELAY,
DELAYTILL

Delays a set number of seconds, or
until a specified time.

DELAY 5

DIM Declares a variable as INTEGER or
REAL.

DIM a AS INTEGER.

DO (WHILE) ...
LOOP

Starts a program loop, continuing
while the WHILE condition holds,
exited when WHILE condition is
fulfilled.

LET A=10

DO WHILE A>=2

 LET A=A - 1

 PRINT A

LOOP

END Stops a macro.

EXIT Exits from the current loop or IF
statement. For example, to exit a
FOR loop.

EXIT FOR

FOR ... NEXT Creates a loop of a specific duration. FOR i = 1 TO 10

GOTO Transfers control to a part of a
program with a pre-defined label.

L20: : PRINT A

GOTO L20

IF ... THEN ...
ELSEIF

Specifies one or more actions to
take if a condition is fulfilled.

LET Assigns a value to a variable.
Variables must be declared with
DIM before being assigned.

DIM A AS INTEGER

LET A = 5.

PASSKEYS Suspends macro processing to allow
the user to enter keystrokes to the
host.

PASSKEYS

PASSKEYSNOCR Suspends macro processing to allow
the user to enter keystrokes to the
host – does not send the final Enter
to the host

PASSKEYSNOCR

PRINT Prints a text message to the Host, or
the session screen, or to the status
bar.

PRINT ñHELLOò

REM Used for code comments. REM This will automatically log

REM you onto a host.

C H A P T E R 5 U S I N G T H E M A C R O L A N G U A G E

220 Developer’s Guide

SELECT Selects alternative actions based on
specified conditions.

U S I N G T H E M A C R O L A N G U A G E C H A P T E R 5

Developer’s Guide 221

Command Description Example

SENDTERM Sends text to the host. SENDTERM PASSWORD, CHR$(13)

SEND, SENDWIN Sends special characters to the host,
or to the currently-active Windows
application.

WAIT (TIMEOUT) Waits for a host response
(optionally, for a maximum timeout
period).

WAIT TIMEOUT 20

 WHILE ... WEND Specifies a loop containing one or
more instructions to be carried out
whilst a condition holds.

DIM B AS INTEGER

 WHILE B >=1

 PRINT B

 LET B = B - 1

WEND

C H A P T E R 5 U S I N G T H E M A C R O L A N G U A G E

222 Developer’s Guide

CALL

Use this command to call a previously-defined procedure. Depending on the procedure, the call
may pass parameters to the procedure.

See page 218 for more details on using procedures.

Syntax

>Ƅ CALL subname ƄƌƄƄƄƄƄƄƄƄƄƄƄƄƄƄƌƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄ><

 ƊƄ <<<< , <<< ƄƋ

 ƈƄ expression ƄƉ

DELAY

Use the DELAY command to insert a delay into your programs of a specified number of seconds.
The following example will insert a delay of 20 seconds.

Example

DELAY 20

Syntax

>Ƅ DELAY seconds ƄƄƄ><

DELAYTILL

Use the DELAYTILL command to insert a delay into your program, until a specified time. The
following example will delay the macro processing until 10:30.

Example

DELAYTILL 10:30

Syntax

>Ƅ DELAYTILL hh:mm ƄƄƄ><

U S I N G T H E M A C R O L A N G U A G E C H A P T E R 5

Developer’s Guide 223

DO

This command allows you to create a program loop. This loop will end when the pre-specified
condition is fulfilled. Use the EXIT DO keyword to exit the loop early (for example, on error).

Example 1

LET a=10

DO WHILE a>=2

 LET a=a - 1

 PRINT a

LOOP

Example 2

LET a=1

DO

 LET a=a+1

 PRINT a

LOOP UNTIL a>10

Syntax

>Ƅ DO ƄƄƌƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƌƄƄƌƄƄƄƄƄƄƄƄƄƄƄƄƌƄƄƌƄƄƄƄƄƄƄƄƄƄƄƌƄƄ>>

 ƊƄ WHILE ƄƌƄ condition ƄƉ ƈƄ | code | ƄƉ ƈƄ EXIT DO ƄƉ

 ƈƄ UNTIL ƄƉ

>>ƄƄƌƄƄƄƄƄƄƄƄƄƄƄƄƌƄ LOOP ƄƌƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƌƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄ><

 ƈƄ | code | ƄƉ ƊƄ WHILE ƄƌƄ condition ƄƉ

 ƈƄ UNTIL ƄƉ

END

Use this command to stop your programs (under normal circumstances).

Syntax

>Ƅ END ƄƄƄ><

C H A P T E R 5 U S I N G T H E M A C R O L A N G U A G E

224 Developer’s Guide

EXIT

Use this command within a loop (whether FOR, WHILE, DO, SELECT or WAIT), to exit from
the current loop in your program.

Alternatively, you can add the name of the loop as a qualifier, for example EXIT FOR.

Example

DIM i as integer

 :

 :

FOR i = 0 TO 10

 IF a = 0 THEN

 REM At end of list, jump to after NEXT loop

 EXIT

 ENDIF

NEXT i

Syntax

>Ƅ EXIT ƄƄƄ><

U S I N G T H E M A C R O L A N G U A G E C H A P T E R 5

Developer’s Guide 225

FOR ... NEXT

Use this command to create a loop of a specific duration, counting up from one value to another.

Use the STEP keyword to alter the size of the step when counting (by default, STEP 1 is assumed).

Use the EXIT FOR keyword to exit the loop early (for example, on error).

Example

FOR b = 1 TO 17 STEP 4

 PRINT b

NEXT b

Syntax

>Ƅ FOR variable = expression TO expression ƄƌƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƌƄ>

 ƈƄ STEP expression ƄƉ

>Ƅ | ƄƌƄƄƄƄƄƄƄƄƌƄƌƄƄƄƄƄƄƄƄƄƄƄƄƌƄƌƄƄƄƄƄƄƄƄƌƄ | NEXT ƄƌƄƄƄƄƄƄƄƄƄƄƄƄƌƄ><

 ƈƄ code ƄƉ ƈƄ EXIT FOR ƄƉ ƈƄ code ƄƉ ƈƄ variable ƄƉ

GOTO

Use this command to transfer control to a part of your program with the pre-defined label. The
label must not be purely numeric.

Example

LABEL:

PRINT a

 :

 :

GOTO LABEL

Syntax

>Ƅ GOTO label ƄƄƄ><

C H A P T E R 5 U S I N G T H E M A C R O L A N G U A G E

226 Developer’s Guide

IF ... THEN ... ELSEIF

Use this command to specify one or more actions to be taken if a condition is or is not fulfilled.

Use the ELSEIF keyword to specify one or more alternative conditions to check for, if the first
condition is not fulfilled.

Example

IF a<=b THEN

 IF a=b THEN

 PRINT "Equality"

 ENDIF

ELSEIF a<b THEN

 PRINT "a smaller than b"

 EXIT IF

ELSE

 PRINT ña larger than bò

ENDIF

Syntax

 <<<<<<<<<<<<<<< , <<<<<<<<<<<<

>Ƅ IF condition THEN | code | ƄƌƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƌƄ>

 ƈƄ ELSEIF condition THEN | code | ƄƉ

>ƄƌƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƌƄ END IF ƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄ><

 ƈƄ ELSE | code | ƄƉ

U S I N G T H E M A C R O L A N G U A G E C H A P T E R 5

Developer’s Guide 227

INPUT

Use this command to input an AiF reply into a string variable. The format of the reply will be:

<STX>n<CR>message<CR>

Use the Reply$() function to read message, and the id$() function to read n. These components
depend on the AiF escape sequence sent, and the reply received. Refer to Chapters 3 and 4 for
details of AiF escape sequences available.

Example

This example prints (sends) an AiF escape sequence determined by the string sequence$, then
reads the reply into the string return$. It then reads the message component of the reply into the
string msg$.

In this example, the AiF sequence sent asks HostAccess for its version number, then puts the reply
into a string, and prints this information to the screen.

DIM Sequence$ as STRING

DIM msg$ as STRING

DIM return$ as STRING

 :

 :

Sequence$ = CHR$(27) + ñ[=1cò

Print sequence$: REM send AiF sequen ce

REM

Input return$: REM read reply

msg$ = reply$(return$)

PRINT ñVersion Number is: ò + msg$

Note: sequence$, return$ and msg$ need to be pre-defined via the DIM command as shown.
Reply$ is a system function, see page 216.

Syntax

>ƄƄINPUT string ƄƄƄ><LET

C H A P T E R 5 U S I N G T H E M A C R O L A N G U A G E

228 Developer’s Guide

LET

Use this command to assign a value to a variable.

Example

LET a = 10

Syntax

>ƄƄƌƄƄƄƄƄƄƄƌƄ variable = expression ƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄ><

 ƈƄ LET ƄƉ

PASSKEYS

Use this command to suspend macro processing, to allow the user to enter keystrokes be passed to
the host. The user keyboard input is passed until the Enter key is pressed. This Enter key is passed
to the host as a carriage return and the macro the resumes processing at the next line.

For example, a “login” macro can effectively pause whilst a user types in a unique password (not
held within the macro) and then continue with invoking the user’s host application.

Syntax

>Ƅ PASSKEYS ƄƄƄ><

PASSKEYSNOCR

Use this command to suspend macro processing, to allow the user to enter keystrokes be passed to
the host. The user keyboard input is passed until the Enter key is pressed. This Enter key is not
passed to the host and the macro the resumes processing at the next line.

Syntax

>Ƅ PASSKEYSNOCR ƄƄƄ><

PRINT

Use this command to print out a text message, to the Host, or the session screen, or to the status
bar.

The PRINT command moves onto the next line when finished, unless the PRINT statement ends
in a semi-colon (“;”) or comma (“,”) character.

Use the comma character to separate printed items with a tab.

Use the semi-colon character to print items with no spacing.

Use the plus character to print items with no spacing.

U S I N G T H E M A C R O L A N G U A G E C H A P T E R 5

Developer’s Guide 229

Example

PRINT ñHelloò , ñOò , ñThereò

PRINT ñHelloò ; ñOò ; ñThereò

PRINT ñHelloò + ñOò + ñThereò

Syntax

>Ƅ PRINT ƄƌƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƌƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄ><

 ƅ <<<<<<< , <<<<<< ƅ

 ƈƄ expression ƄƌƄƄƄƄƄƋ

 ƊƄ , ƄƋ

 ƈƄ ; ƄƉ

REM

Use this command to put comments in your code.

Syntax

>Ƅ REM remark ƄƄ><

SELECT

Use this command to define alternative actions based on specified conditions more easily than with
the IF command.

Use the DEFAULT keyword to specify the default action to be taken (if no conditions are met).

Note: you can use the EXIT SELECT keyword to exit from the SELECT construct.

Syntax

 <<<<<<<<<< , <<<<<<<<<<

>Ƅ SELECT | CASE expression | ƄƌƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƌƄƄƄƄƄƄ>>

 ƈƄ CASE ex pression | code | ƄƉ

>ƄƌƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƌƄƄ END SELECT ƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄ><

 ƈƄ DEFAULT | code | ƄƉ

C H A P T E R 5 U S I N G T H E M A C R O L A N G U A G E

230 Developer’s Guide

SENDTERM

Use this command to send text to the host.

Syntax

 <<<<<<

>Ƅ SENDTERM string ƄƄƄ><

SEND and SENDWIN

Use the SEND command to send special character codes to the host. This sends data to the host as
though the user had pressed the keys on the keyboard. So, if the user reprograms the ‘1’ key to send
‘Hello’ then the sequence SEND “1” would send the string “Hello” to the host and not a “1”.

Use the SENDWIN command to send special character codes to the currently-active Windows
application.

Example

SEND ñóHello Thereô CRò

Syntax

 <<<<<<<

>ƄƄƌƄ SEND ƄƄƄƄƌƄƄƄ ñkeycodeò ƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄ><

 ƈƄ SENDWIN ƄƉ

Where keycode is one of the mnemonics or special characters defined below:

Mnemonic Represents Character Represents

 LA Left Arrow ^ Control function.

RA Right Arrow @ Alt function.

UA Up Arrow # Shift function.

DA Down Arrow F Function key.

PU Page Up S Shift + function key.

PD Page Down C Control + Function key.

Mnemonic Represents Character Represents

HM Home A Alt + Function key.

U S I N G T H E M A C R O L A N G U A G E C H A P T E R 5

Developer’s Guide 231

EN End Wnn Wait time in 55 millisecond units
(clock ticks, about 18.2 per second),
where nn is from 1 to 255.

IN Insert WP Wait for user key and then pass it on.

DE Delete WE Wait for user key and then throw it

away.

TA / TB Tab WB Wait until key buffer is empty.

ST / BT Shift Tab
(=Back Tab)

BR Break.

ES Escape ‘text’ Enclose literal text within single
quotes.

BS Backspace

SP Space bar

CR Enter

LF Ctrl-Enter

DQ The double quote "

SQ The single quote '

WAIT

Use this command to wait for a host response.

Use the TIMEOUT keyword to specify a maximum wait period, and then the same keyword (after a
CASE keyword) to specify any action to be taken after that period has passed.

Use the CASE keyword to specify the action to be taken if a specified string is seen.

Note: You can use the EXIT WAIT keyword to exit from the WAIT loop.

C H A P T E R 5 U S I N G T H E M A C R O L A N G U A G E

232 Developer’s Guide

Syntax

>Ƅ WAIT ƄƌƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƌƄƄƌƄƄƄƄƄƄƄƄƄƌƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄ>>

 ƈƄ TIMEOUT seconds ƄƉ ƈƄ x,y ƄƄƄƉ

>Ƅ <<<<<<<< , <<< <<<<<<

 < , <<

>Ƅ CASE string | code | ƄƄƌƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƌƄ END WAIT ƄƄƄƄƄƄƄƄƄƄƄƄ>>

 ƈƄTIMEOUT | code | ƄƉ

Example

DO

 WAIT TIMEOUT 30

 CASE ñpassword:ò

 PASSKEYS : REM allow user to enter password

 CASE ñlogin:ò

 SENDTERM ñDavidò : REM enter a login name

 CASE ñ$ ñ : REM end script at the prompt

 END

 CASE ñ(ansi)ò : REM Send terminal type

 SENDTERM ñVT100ò

 TIMEOUT

 PRINT ñGive upò

END WAIT

LOOP

U S I N G T H E M A C R O L A N G U A G E C H A P T E R 5

Developer’s Guide 233

WHILE

Use this command to specify a loop containing one or more instructions to be carried out whilst a
condition holds.

Use the EXIT WHILE keyword to exit the loop early (for example, on error).

Example

DIM t AS Integer

LET b = 10

WHILE b >=1

 PRINT b

 LET b = b - 1

WEND

Syntax

>Ƅ WHILE condition ƄƄƄƌƄƄƄƄƄƄƄƄƄƄƌƄƌƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƄƌƄƌƄƄƄƄƄƄƄƄƄƄƌƄƄ>

 ƈƄ | code ƄƉ ƈƄ | EXIT WHILE ƄƉ ƈƄ | code ƄƉ

>Ƅ | WEND ƄƄƄ><

C H A P T E R 5 U S I N G T H E M A C R O L A N G U A G E

234 Developer’s Guide

Macro Example

The following example demonstrates the power of the macro language. This is an auto-login facility,
which will automatically log you into a Unix machine, given the correct password.

DIM retries AS Integer

DIM psw$ AS String

DIM i AS Intege r

DIM s AS String

FOR retries = 1 TO 3

 SEND "'root' CR" : REM send user name to host

 WAIT TIMEOUT 10 : REM wait 10 seconds

 CASE "Password:"

 s= Chr$(27) + "_" + 5 + ";" + 10 + ";" + 16 + ";" + 16 +

 ";1;0;0J" + ";" + "Password:" + Chr$(27) + " \ "

 PRINT s;

 INPUT psw$: REM read user reply (password)

 psw$= reply$(psw$)

 SENDTERM psw$,chr$(13) : REM send password to host

 DEFAULT

 PRINT "No idea. An y clues?"

 EXIT FOR

 END WAIT

 REM if host asks for terminal type, reply with ñvt220ò

 WAIT TIMEOUT 4

 CASE "(ansi) "

 SEND "'vt220' CR"

 DEFAULT

 EXIT FOR

 END WAIT

 WAIT TIMEOUT 4 : REM wait for host to print a prompt

 CASE "# "

 EXIT FOR

 END WAIT

NEXT : REM And try again

IF retries >= 3 THEN

 PRINT CHR$(27) + "_X" + CHR$(27) + " \ ";

REM terminate HostAccess after 3 tries

ENDIF

Developer’s Guide 235

Appendix

A
Describing Images

When using Windows AiF escape sequences that refer to buttons, you can describe button images
for a particular button in great detail.

Â You can define images to suit your requirements.

Â You can store image definitions in your (user’s) termw.ini file, for widespread or repeated
use in your applications programs.

Â You can display bitmaps or icons, either as separate files (.bmp or .ico files) or as part of a
resource (a .exe or .dll file).

The facilities described here give extensive and powerful tools to customise your display. However,
you can use the most simple features, to display images quickly.

Image Types

There are three ways of referring to images:

Â Simple images.

Â Images with labels attached.

Â Images with button window descriptions.

How to Describe Images

To describe images in a Windows AiF escape sequence, use an image specification string. This
can be embedded within an AiF escape sequence, or can be pre-defined in the user’s ha6.ini file
(for the 16 bit product) and ha7.ini file(for the 32 bit product).

An image specification string contains several parameters, separated by commas. Each parameter
takes the form:

name = value

where name is the parameter name and value is the value for that name. For example,
filename=c:\ images\ helpbut.bmp is a parameter.

As each parameter is named, parameter order is unimportant, although we recommend that you
follow the documented order for clarity and ease of use.

A P P E N D I X A D E S C R I B I N G I M A G E S

236 Developer’s Guide

Conventions Used

In the following topics, image specification strings are described as follows:

{parameter1},{parameter2}, ... , {parameterN}

Where parameter1 ... parameterN are the names of the parameters within the string. Optional
parameters are enclosed in braces.

Many parameter names and values can be abbreviated in use. For example, filename can be
abbreviated to f, and bmp can be abbreviated to b. These abbreviations are shown in parentheses.
We recommend you only abbreviate after developing and testing your code, to increase readability
during development.

Pre-defining Images

You can define and store a set of image specification strings, with labels, for your own images, in
the user’s ini file. You can then access these images from an AiF sequence, using the images labels.

To create a labelled image:

1. Define an image specification string for your image.

2. Label this string.

3. Place the labelled string your HA6.ini file (for the 16 bit product) and ha7.ini file (for the
32 bit product) in the HostAccess directory.

4. Store simple bitmap image strings in the [dibs] section.

5. Store strings for bitmap images with labels in the [images] section.

6. Store strings for bitmap images with button window descriptions in the [buttons] section.

This labelling feature simplifies image use within Windows AiF escape sequences. Instead of hard-
coding image specification strings directly into the AiF sequence, you can simply refer to their label
in the .ini file.

We recommend that you make full use of this facility, for any but the most simple specification
strings.

HostAccess also has a series of pre-defined images for you to use - these images are described in the
following sections.

D E S C R I B I N G I M A G E S A P P E N D I X A

Developer’s Guide 237

Using Named Images

To use a named image from an AiF sequence, refer to it by name.

To use a named image containing a label or a button window description from an AiF sequence,
precede the name with a @ character.

Example

The following section could be in a typical .ini file:

[images]

frog = filetype=bmp, filename=frog, su = 1 -black

To use this image, you can then refer to it as @frog. For example, you could use:

ESC_31 ; 10 ; 10 ; 5 ; 5 w animal ; @frog ESC \

This gives a 5x5 push-button called animal at (10,10), using the string labelled frog in the [images]
section of the user’s host.ini file.

Defining a simple image

To specify a simple image, use a specification string as follows:

{filename},{filetype},{id},{tilesize} ,{subst}

Where:

Name Description

filename (f) File name of the image. A default file extension is added, depending on the file
type (see below). There is no default file name. You must give this parameter,
except when accessing an internal resource in HOST.EXE. The default file
location is the current working directory. To specify another location, give the full
path name.

filetype (ft) File type. Can be any of the following:

bmp (b) - .bmp file (the default).

bmpexe (be) - bitmap in a .exe or .dll file.

ico (i) - .ico file.

icoexe (ie) - icon in .exe or .dll file (i.e., in any file in ‘new executable’ format).

id Resource id. This selects the particular icon or bitmap resource from a .exe/.dll
file. It may be a name or a number. There is no default for this - it must be given if
the bitmap is being taken from a .exe/.dll file.

A P P E N D I X A D E S C R I B I N G I M A G E S

238 Developer’s Guide

tilesize (ts) Tile size in pixels, given as x/y. Default is 57 by 33, which is the standard size used
in dialog boxes for Borland-style bitmap push buttons. e.g. tilesize = 16/16.

subst (su) Use to substitute colours in an image – typically, to substitute the terminal
background colour for the background colour of the bitmaps. Substitution may be
repeated.

Example

To use the file ‘frog.bmp’, in the directory ‘c:\pictures’, use the following specification string:

file=c: \ pictures \ frog

Since no extension was given, .bmp is assumed to be the default file type.

To use this string in an AiF escape sequence, use:

ESC_31 ; 10 ; 10 ; 5 ; 5 w animal ; file=c: \pictures \frog ESC \

This creates and displays a 5x5 push-button named animal at (10,10), using our “frog.bmp” file.

Colour Substitution

To substitute a colour, use either:

N-R-G-B

or:

N-name

where N is the new (replacement) colour, and R-G-B or name specifies the old colour. These
parameters are described in the following sections.

Specifying the New Colour

N is the new (replacement) colour. This is either a terminal window colour number from 1-16, or is
a Windows system colour, taken from the following list:

Name Colour Name Colour

Bg Desktop background hi Highlighted background

Menu Menu background hitext Highlighted text

Win Window background btnface (bf) Button background

Wintext Window text btntext (bt) Button text

Menutext Menu text btnshadow (bs) Button edge colour

D E S C R I B I N G I M A G E S A P P E N D I X A

Developer’s Guide 239

Name Colour Name Colour

Appworkspace Background colour for
MDI apps

btnhi Button highlight colour

 greytext Grey text colour

Specifying the Old Colour

To specify the colour to be replaced, you can:

Â Define the colour in terms of its R-G-B (Red-Green-Blue) components, where R, G and B
are in the range 0..255. For example, 0-0-255 is full intensity blue, and 0-0-0 is full intensity
black

Â Use a pre-defined colour name, as a shortcut way of specifying common colours:

red (r) blue (b) magenta (m) white (w)

green (g) cyan (c) yellow (y) black (b)

For example, to substitute all black pixels with colour 1 from the application palette, use:

su=1-black

Note: this colour must exactly match the colour of the image.

Examples: colour substitution

To use the file frog in your current directory, substituting all black pixels (RGB=0,0,0) with colour
1 from the application palette, use:

f=frog,su=1-bl

To use a bitmap in a .exe format file called ‘bitmaps.dll’, with resource number 116, tile size 48x64,
and replace green pixels (RGB=0,255,0) with the system’s button face colour, use:

f=bitmaps.dll,ft=be,id=116,ts=48/64,su=btnface-green

To display an image based on this string, you could use the following AiF escape sequence:

ESC_31 ; 2; 2 ; 5 ; 5 w icon1 ; f=bitmaps.dll,ft=be,id=116,ts=48/64,su=btnface-green ESC\

This displays a 2x2 image named icon1 at (5,5), using the string described above. See Chapter 2 for
further details of AiF escape sequences.

A P P E N D I X A D E S C R I B I N G I M A G E S

240 Developer’s Guide

Inbuilt Images

The following bitmap images are built into HostAccess, and can be used by the host:

Name Description

_hand bitmap used to display the open palm image used in warning dialogs.

_applogo The ‘application logo’ - the bitmap image for the product, as shown in the about
and splash boxes.

_logo The ‘Company logo’ - the bitmap image for the Company producing the product, as
shown in the About... and splash boxes.

_sp Standard Push Button images:

This is a tiled bitmap image. Tile 1= Cross., Tile 2= Help, Tile 3= No, Tile 4 =
Yes/OK

_sm Standard Message Box images. This is where the large exclamation mark, info
symbol and question mark bitmaps are defined. Note that the ‘hand’ symbol
logically belongs to this set, but is in a separate bitmap because it is a different size.
Tile 1=info, Tile 2=exclamation, Tile 3=question mark.

You can also define your own built-in bitmaps.

D E S C R I B I N G I M A G E S A P P E N D I X A

Developer’s Guide 241

Defining Labelled Images

To include text labels in your image, use the following specification string:

{bitmap/image parameters},{label},{labelpos},{sm},{mag},{tile}

If you have a named bitmap image pre-defined in your host.ini file, use the bitmap parameter to
refer to it.

If you wish to define a whole image in one specification, use image parameters. These are the
standard parameters for defining an image.

Name Value

bitmap (bm) The label of a pre-defined bitmap image.

image
parameters

The filename, filetype, id, tilesize, and subst parameters, as for a simple
bitmap specification string.

label (l) Text for label for the image, drawn at a position offset from the top-left of
the output rectangle by the ‘labelpos’ value.

labelpos (lp) Label position, given as x/y, used to decide the origin of the start of the
text label. Default = (0,0).

sm Stretch mode. Possible values are:

clip (c) clip the image to the destination display rectangle.

mag (m) magnify the image as much as possible, whilst retaining aspect
ratio.

fill (f) stretch/compress the image to fit the destination rectangle
exactly. (default)

mag (m) Magnification factor. A positive or negative integer, controlling the size of
an image. A negative number will reduce the size, a positive number will
increase the size.

For example, specify -2 to divide the size by 2, or 3 to magnify the size by
3.

Obviously, -1, 0 and 1 will have no effect.

tile (tl) This specifies the tile number for the image. Used when the images is tiled,
holding an array of separate images of the same size. The first tile is no. 1.

The default is not to select a tile - i.e., the whole of the source image.

A P P E N D I X A D E S C R I B I N G I M A G E S

242 Developer’s Guide

Specifying Text-Only Labels

To specify text labels (without any bitmap images), use the following image specification string:

type=t,{label},{size}

Name Value

type (t) Sets the type: type=t (or type=text) sets image as a text label

label (l) Text for label. This string will be drawn centered in the output rectangle.

size (s) Specifies the natural size of the button, in pixels. This defaults to the size of
the rectangle needed to exactly hold the label, using whatever font the image
is being output with.

Example: Using Pre-defined images

To use an image based on a pre-defined bitmap image named ‘_sp’, with tile 1, label position x=26
y=17, label ‘Cancel’, you could use either:

bitmap=_sp, type=bitmap, tile=1, labelpos=26/17, label=Cancel

or

bm=_sp, tl=1, lp=26/17, l=Cancel

Note: This is the exact definition of the image used in the standard Cancel push button.

To use this image in a 2x4 push-button named cancel at (5,5), use the following AiF escape
sequence:

ESC_31 ; 2; 4 ; 5 ; 5 w cancel ; bm=_sp, tl=1, lp=26/17, l=Cancel ESC\

To use a bitmap image, setting natural size to a magnification of 2, when rendering the image is to
be stretched/compressed whist retaining its aspect ratio, from the file frog.bmp, and substituting all
black pixels (RGB = 0,0,0) with colour 1 from the application palette, use:

f=frog.bmp, m=2, sm=mag, ft=bmp, su=1-1-black

To use a text based image (i.e. an image not based on a bitmap), with label ‘Cancel’, and natural size
100x32 pixels, use:

t=t, l=Cancel, s=100/32

This might be used to describe a textual button in a dialog box.

D E S C R I B I N G I M A G E S A P P E N D I X A

Developer’s Guide 243

Inbuilt Labelled Images

There are several inbuilt image specifications that you can use:

Name Description

_cancel The image and label ‘Cancel’ to go inside a Borland-style push button.

_help The image and label ‘Help to go inside a Borland-style push button.

_yes The image and label ‘Yes’ to go inside a Borland-style push button.

_no The image and label ‘No’ to go inside a Borland-style push button.

_ok The image and label ‘OK’ to go inside a Borland-style push button.

_hand The image to go in a warning message box.

_logo The image used in the About... and splash dialogs holding the Company logo.

_applogo The image used in the About... and splash dialogs holding the product logo.

_pling The image to go in an error message box.

_info The image to go in an information message box.

_question The image to go in a question message box.

A P P E N D I X A D E S C R I B I N G I M A G E S

244 Developer’s Guide

Defining Button Windows for Images

To include a button window description in your image specification string, use the following
parameters:

{image parameters},{border},{image}

Name Value

image
parameters

The filename, filetype, id, tilesize, and subst parameters, as for a bitmap image
specification string.

border (bd) Specifies the type of border to be drawn round the button.

 pushedout (out) 2 pixel pushed-out frame round contents. Suited for
decoration buttons. Uses white for top left colour, and
BTNSHADOW for bottom right colour. This is the default.

 push (p) Push button borders. Sculpted 3 pixel wide border around
contents, displayed either as pushed in or out depending on
button select state. Uses standard Windows button colours
BTNFACE BTNSHADOW and BTNHILIGHT.

 frame (f) Single pixel frame round contents. Suited for decoration
buttons. Frame drawn in Windows WINDOWFRAME
colour.

 pushedin (in) 2 pixel pushed-in frame round contents. Suited for
decoration buttons. Uses BTNSHADOW for top left colour,
and white for bottom right colour. This is the default.

 shadowed

(shad)

1 pixel frame around contents (as for ‘frame’ style), plus a 3
pixel shadow to the bottom and right, in BTNSHADOW
colour.

 none (n) No border.

image (im) Used to refer to a named button specification for the button contents.

D E S C R I B I N G I M A G E S A P P E N D I X A

Developer’s Guide 245

Push button examples

To use an image with label ‘Cancel’, with push button borders, use:

border=p,type=t, label=Cancel

This is a text push button.

To use the image labelled ‘_question’, with pushed-in border, use:

border=in,image=_question

This is the decorative sculpted question mark you sometimes see in Borland-style dialog boxes.

To use the image labelled ‘_no’, use:

bd=p,im=_no

This is a standard ‘no’ button used in dialogs.

To frame borders around the image in ‘frog.bmp’, which is to be stretched to fit the button size,
use:

border=frame, file=frog

To display this image, you could use the following AiF escape sequence:

ESC_32 ; 5; 5 ; 15 ; 5 w toad ; border=frame, file=frogESC\

This creates a 5x5 image labelled toad at (15,5) from the above specification string.

Inbuilt button-images

The following are inbuilt into HostAccess:

Name Description

_pling Decorative pushed-in exclamation mark button. Used in message boxes.

_hand Decorative pushed-in hand button. Used in message boxes.

_question Decorative pushed-in question mark button. Used in message boxes.

_info Decorative pushed-in information button. Used in message boxes.

_logo Decorative pushed-in Company logo button. Used in message boxes.

_applogo Decorative pushed-in product logo button. Used in message boxes.

_ok Standard Borland style OK push button.

_cancel Standard Borland style Cancel push button.

_yes Standard Borland style Yes push button.

A P P E N D I X A D E S C R I B I N G I M A G E S

246 Developer’s Guide

Name Description

_no Standard Borland style No push button.

_help Standard Borland style Help push button.

Developer’s Guide 247

Index

i
A

Accelerator character, 29
AiF for Windows

Common problems, 103
AiF sequences

Clear slots of copied
screen regions, 31

close DDE link, 112, 211,
214

colours, 108
detect blinking status,

108
detect colour/mono

monitor, 108
Copying a region of

screen, 30
cursor off, 110
cursor on, 110
DDE, 211, 212
execute DDE macro, 211,

213
field input

activate box input, 109
activate line input, 108
invoke window editor,

109
load exit keys, 109

host echo off, 109
host echo on, 109
initiate DDE, 211, 212
menus

load exit keys, 108
Pasting a copied screen

region, 31
request data from DDE

server, 211, 214
save environment

pop environment, 109

push environment, 109
send data to DDE server,

112, 211, 213
windows

close, 108
heading, 108
open, 108

AiF TOOLKiT
Escape sequence summary,

12
AiF Utilities, 106
Alignment

Text, 171

B

Box Drawing, 160
Box input, 145

Examples, 147
Getting a response, 146

Buttons, 39
check boxes, 42
Creating a text button, 39
example of usage, 44
Image, 40
radio buttons, 43
reading, 45
Reading it's check state, 45
Reading which is checked,

45
setting/clearing, 45
Solving problems, 103

C

CALL
Macro, 226

Capturing screen text, 205

Cascading menu format, 133
Centering Text, 171
Changing Cursor Shape, 166
Check boxes, 42
Clear slots

Of copied screen regions,
31

Clipboard, 56
Closing HOSTACCESS from

the host, 204
Colour

Specifying a new, 244
Specifying old to be

replaced, 245
Substitution, 244

Colours
ANSI standard, 113
Changing controls, 24
Changing default

scuplture, 20
Intense bit set, 114
Resetting to the default,

115
Setting default

foreground/background
, 33

Switching ANSI colour
mode on/off, 115

Combo boxes, 51
Creating, 51
example, 52
Hiding and showing, 56
Limiting text, 55
reading, 53
Reading changes, 54
Reading current item, 53
Reading the contents, 54
Reading to see if visible, 54
Selecting current item, 55

Command stack control, 180
Commands, 82

I N D E X

248 Developer’s Guide

addding groups, 84
changing types, 83
creating, 82
examples, 85
reading, 83
with toolbars, 84

Control codes, 174
Control Management -

solving problems, 103
Control response format, 200
controls

root, 32
Controls

accelerator character, 29
Alternate message, 28
changing colours, 24
Creating a group, 28
destroying, 23
enabling/disabling, 22
event reporting, 24
groups, 28
introduction, 14
managing, 22
repositioning, 23
Return key, 29
showing/hiding, 22
Using, 28

Copy
A region of screen, 30

Currency format, 74
Currency validations, 74
Cursor

Changing, 77

D

Data extraction, 197
DDE, 210, 211, 212

Client support, 212
close link, 211, 214
Close link, 214
execute macro, 211, 213
initiate, 212
Initiating a conversation,

212
overview, 210
poke, 211, 213
request data from server,

211, 214

Requesting data from a
server, 214

Sending commands to the
server, 213

Sending data to a server
(Poke), 213

Server Support, 214
DDE Sequences, 211
DDE server support, 215
DELAY

Macro, 226
DELAYTILL

Macro, 226
delimiters, 15
Describing Images, 241
Display Optimisation, 151
Displaying images, 41
Displaying Images, 198
DO

Macro, 227
DOS Gateway, 186
DOS Integration, 111
DOS Keyboard Stacker, 188
Drawing

Sculpted lines, 19
Dynamic Data Exchange, 210
Dynamic Data Exchange

(DDE), 112

E

Edit boxes, 64
Changing the password

character, 69
Creating, 64
Initialising a multi-line edit

box, 70
manipulating, 68
reading, 66
Setting selection range, 69
Setting the selection range,

55
Using the clipboard with,

69
validated, 71

Edit examples, 73
Emulation

Changing terminal type,
207

END

Macro, 227
Environment, 113
Erase DOS file, 192
Escape sequences

Using, 14
Escape Sequences, format of,

14
Event reporting

Enabling, 25
Events, 24

Getting, 26
Requesting, 26
Timed, 93

Events returned
Format, 183

EXIT
Macro, 228

Exit keys
Loading application, 124
User response, 124

Exit Keys, 142

F

Field input, 140
Exit keys, 141
Response, 142
Types, 140
User keys available, 141

File Transfer, 208
Focus

Setting Input focus, 27
Fonts

Changing, 91
Solving problems, 104
Using alternate PC, 169

FOR ... NEXT
Macro, 229

FORMs, 154
Examples, 155
Files, 154

Freeze On/Off, 157
Function keys

Programmable, 173

G

GOTO

 I N D E X

Developer’s Guide 249

Macro, 229

H

Host Echo On/Off, 159

I

IF ... THEN ... ELSEIF
Macro, 230

Image buttons, 40
Images

Closing the image
application, 199

Defining a simple image,
243

Defining Button Windows,
250

Defining labelled, 247
displaying, 41
Displaying, 198
Displaying multiple, 198
Inbuilt, 246
Inbuilt button, 251
Inbuilt labelled, 249
Pre-defining, 242
Types, 241

INPUT
Macro, 231

Invoking Windows help, 92

K

Keyboard Control, 110
Keyboard control features,

173
Keys

Send to Windows
applications, 203

L

LET
Macro, 232

Line Drawing, 162
Line input, 143

Getting a response, 144
Lines

Drawing sculpted, 19
List boxes, 57

Creating, 57
example, 59
incremental, 58
manipulating, 62
reading, 60
Setting tabs, 63

M

Macro, 217
Declaring variables, 218
Functions, 219
Procedures, 222
Summary, 223
syntax, 217

Macros
AiF sequence, 172

Managing controls, 22
Maximise, 200
menus

commands for, 82
Menus, 89

activate cascading menus,
108

activate pop-down menu,
108

AiF, 120
AiF options, 121
close cascading menus, 108
close pop-down menus,

108
Colour configuring, 122
Configuring selection

characters and
separators, 123

creating, 89
Displaying, 89
enabling/disabling, 90
Enabling/disabling, 90
Exit keys, 123
load cascading menus, 108
load pop-down menus, 108
Removing, 90
reset cascading menus, 108
reset pop-down menus,

108

Sets, 121
Message boxes

modal, 77
Minimise, 200
Modal message boxes, 77

Positioning, 78
Returning values to the

host, 79
Mouse control, 182

P

Palette
Forcing reconstruction, 33

Parameter Delimiters, 15
PASSKEYS

Macro, 232
Paste

A copied region of screen,
31

Pointer
Changing, 77

Pop-down menus, 125
Activating, 127
Activating cascading, 132
Cascading, 130
Clearing, 126
Closing, 128
Closing pop-down

cascading menus, 134
Getting a response, 127,

133
Loading, 126, 131
Resetting, 131
Using, 126

PRINT
Macro, 232

Printing to a DOS file/device,
191

Problems
Buttons, 103
Control management, 103
Secondary windows, 103

R

Radio buttons, 43

I N D E X

250 Developer’s Guide

Reading Selected Display
Text, 49

Reading Selected Hidden
Text, 49

Reading String List Size, 49
REM

Macro, 233
Reporting events to the host,

24
Return key

Controls, 29
Root control

creating, 32
miscellaneous functions,

33
reading, 32

Root control features, 32
Root controlmanipulating, 32
Run-time status, 205

S

Save Environment, 150
Scancode keys, 176

List, 176
Switching On/Off, 175

Screen Fill Character, 167
Screen Layout, 16
Screen Modes, 165
Screen sculpting, 17

colours, 17
default colours, 20
example, 20
sculpted boxes, 18
sculpted lines, 19
sculpture mode, 18

Sculpting - solving problems
Problems

Sculpting, 103
Sculpting the screen, 17

example, 20
Secondary windows, 34

activating, 37
creating, 35
destroying, 37
example, 34
hiding/showing, 38
setting output focus, 38

Secondary Windows - solving
problems, 103

SELECT
Macro, 233

Selection boxes, 135
activate, 108
Activating, 137
close, 108
Closing, 138
Getting a response, 138
load, 108
Loading, 135
reset, 108
Resetting, 135

SEND
Macro, 235

SENDTERM
Macro, 235

SENDWIN
Macro, 235

SLOTs, 152
SLOTS

STACK Facility, 153
Special keys

Leader character, 189
Mnemonics, 188

Special output mode, 170
Static labels, 76
Status Bar

changing, 80
hiding/showing, 80
setting pane contents, 80
setting text, 80

String lists, 46
Changing the list to be

displayed, 55
clearing, 50
Creating, 46
examples, 47
Format, 46
manipulating, 47
reading, 49
Reading size, 49
setting special characters,

50
Summary

AiF Utilities, 108
Switching Cursor On/Off,

167
System Message Line, 163
System Message Line Control,

164

T

Terminal echo, 125, 142
Text buttons, 39
Text labels

Specifying, 248
Timed events, 93
Toolbars

creating, 87
Toolbars and toolboxes, 86

adding to, 87
example, 87
hiding/showing, 86

toolboxes
commands for, 82

Toolboxes
Creating, 86

Typeahead Mode, 180

U

Using Control Groups, 28
Utilities, 106

V

Validated edit boxes, 71
Changing the date, 73
creating, 71
currency validations, 74
date validations, 72
integer validations, 71
Special date strings, 72

Verify DOS File or Directory,
196

W

WAIT
Macro, 236

WHILE
Macro, 238

Window Editor, 147
Examples, 149
Getting a response, 148

Windows

 I N D E X

Developer’s Guide 251

AiF sequences, 117
Closing, 118
Control state, 200
Detect if application

running, 202

Headings and footings,
119

Start program, 201
Start program response

format, 201

Windows help
invoking, 92

