
	
 	

	

www.methodics.com	
 1	

	

	

Benefits	
 of	
 IP-­‐Centric	
 Design	

Not Just For Design Reuse
In SoC’s, IP has become an important part of the
design process and has spawned many new IP
content providers, tools companies and general
methodology changes to accommodate.

One basic assumption with an IP-based design flow is
that the underlying building blocks are reusable, and
that the efficiencies we get from reusing commonly
found blocks makes the extra effort required to
publish the IP in a reusable form worthwhile.
However, in some situations reuse is difficult. - for
example custom layout in todays processes is not
easily reused when the process shrinks and often
must be completely re-implemented.

Circuits can also behave in a non-linear manner
between processes and must be designed differently.
For some companies this lack of reuse undermines
the value of maintaining IP blocks and drives the
focus to project specific blocks and derivatives in
future designs.

There is significant value in an IP-Centric design
methodology, even in the absence of reusable IP
blocks. This paper discusses that concept

What Makes An “IP”
An IP contains many different forms of data, the key
component of an IP-centric design methodology is that
these many forms of data need to be kept together and
treated as an atomic unit.

Design Dependencies
When designing with IP’s an important consideration is
to track subsystem dependencies. IP blocks are often
designed by independent teams, and a system is
needed to manage dependencies and track which
versions of IP’s work well together.

In the example below we see that an SoC and its
hierarchical resources have been defined, including the
versions of each IP in the system. In this example we
show how a change in one of the lower level
subsystems of the SoC impacts the release of the top
level SoC.

This “propagated” release is one example of the
dependency tracking we need in an IP-centric design
system.

Another benefit of this dependency aware approach is
that users can create workspaces at any point in the
hierarchy and perform editing/testing at the subsystem
level. In an IP-centric design methodology hierarchy is
malleable (assuming you have the necessary test
structures to validate the design)

	
 	

	

www.methodics.com	
 2	

	

	

IP-Centric Issue Tracking
One area that has been a problem SoC’s is tracking
bugs across the various components. Its not always
clear at what level a bug should be assigned since
designers often don’t have visibility beyond the interface
to a particular block, and as blocks are combined within
an SoC level is a challenge to track bugs across
hierarchical subsystems.

The bigger issue is that the tools traditionally used to
track these bugs are project-centric rather than IP-
centric and all of the interesting reporting and tracking is
done in the context of the project. Without a way to align
IP-centric hierarchy of the design with the top level SoC
project users are forced to resort to manually
maintained spreadsheets with all the human error
concerns that go with that approach.

An example of an IP-centric hierarchical approach to
defect tracking used in ProjectIC is shown in the image
below.

Parent/Child tracking
An extension of the IP-centric tracking is the need to
“discover” bugs in parent/child design data,

When a copy is made of an existing block and used as a
starting point for a new design, what happens if we later
find bugs in the source design? Can we notify the
design consumers and save them the trouble of finding
the bugs independently.

The same is true of the downstream child block. If we
find a bug in a copy can we notify the parent block
designers?

To handle this issue we need a way to collect these
parent/child bugs and consolidate them in a view of the

bugs that affect the current design. The design owners
can then decide if they care about these issues and can
“accept” them as dependencies.

Workspace management
Another area that benefits from an IP-centric approach
is creating and updating user workspaces. Maintaining
each functional block as a standalone entity in your IP
management system allows control of the versions of
each block that is used in a workspace. Releases of
blocks in a design can be managed independently and
easily communicated to the team members, including
new configurations of the design.

Another requirement is the ability to diff at the IP level,
not just the constituent files in the data management
system. This included the resources (subsystems) used
in the 2 versions of a hierarchical block and other
important metadata such regression suite failures,
routability etc.

IP version tracking and reporting
Tracking how an IP is being across designs is useful in
many ways. IP owners can easily reach to the IP
consumers when looking for feedback, when
communicating important bugs, managing behavior, etc.

Another way these relationships are leveraged is to
track the context in which an IP block is being used.
What components it is interfacing with, what versions of
components have been proven to work correctly
together, and other key contextual information?

This kind of analysis identifies subsystems and their
versions that have seen successful deployments in
parent SoC’s and reduces risk for future integrators.

Summary
We’ve discussed how an IP-centric approach to design
large SoC’s brings a number of techniques to help with
managing versions, releases and tracking quality. We’ve
also seen that an IP-centric design methodology will
work well with blocks that traditionally haven’t been
packaged as IP’s. Essentially any block in an SoC can
benefit from these kinds of techniques without the
requirement for IP publishing/packaging and the other
overhead usually associated with a fully reusable IP
based SoC bill of materials.

For more information on Methodics products please
email contact@methodics.com.

