
Organizing Files in Repositories
Source code files are stored in the Surround SCM database and
organized in repositories. While you can think of repositories as a
directory structure, a repository has a key difference—file history.
Files in repositories are tracked over time and file changes are
versioned. Who made changes, when, and why is also tracked for
each file. Directories do not track this information.

Because the number of files will grow over time, it is a good idea to
do some planning before you start adding files to Surround SCM.

Repositories versus branches
It is important to understand the difference between repositories
and branches. A repository is used to organize files and other
repositories. Users map working directories to repositories, modify
files in a working directory, and check in changes to the repository.
In the following example, the WysiCorp Products repository is
organized by product.

A branch is a separate line of development that uses an existing
repository and its files as a starting point. Branching allows users
to work on multiple versions of a product simultaneously while
using the same set of source files. A branch represents a milestone
in development. Its primary purpose is to provide a separate area
for development or to represent the code at a point in time, not to
store files.

The following example shows a branching structure for multiple
releases. The WysiCalc 1.0.x branch was created from the WysiCalc
repository on the mainline branch, which is the top-level branch
that contains all repositories and branches.

Do not create branches just to organize files. For example, if you
are developing a new product, do not automatically add a branch
for the new product. Instead, create the repository structure in
the mainline branch. Perform development activities at that level
until you are ready to create a release or need to begin parallel
development.

When to add files to a repository
When you create a new product, you do not need to add files to the
repository as soon as you create them or wait until they are complete.
You can work on local copies of source code and add files to the
repository when you are sure the files will not break a build or when
other developers need to work with them. If your computer is not
backed up regularly, or if you work remotely, you may want to add
files to Surround SCM earlier to back up your work.

How to structure a repository
The easiest repository structure to maintain has a repository for
each product or application on the mainline branch. Add the files
and any subrepositories to each product repository. The following
example shows the repository structure for a company, WysiCorp,
and one of their products, WysiCalc.

Surround SCM Best Practices

This document addresses some of the common activities in Surround SCM and offers best practices for each. These best
practices are designed with Surround SCM users in mind, but many of them may apply regardless of the tool.

Figure 2: WysiCalc 1.0.x branch and repositories

Figure 1: WysiCorp Products repositories

What to include in a repository
Because source code files and the file change history are stored in
Surround SCM, the database can grow exponentially. In general,
you only need to store the source files necessary to create a
product. Do not add binary files generated during a build, such as
executables and object files, to Surround SCM. You can regenerate
those files if you have the source code and build scripts. This
practice can save significant database space. You may want to
include binary files if you need to version the files or if the time
required to regenerate them outweighs the space considerations.

It is also important to store project-related documentation,
including requirements, functional specifications, technical designs,
and policies, in Surround SCM unless you use a requirements
management tool, such as TestTrack RM. You can also store
binary source files in Surround SCM. In the following example, the
Documents repository contains user documentation and project
documents.

Branching
Branching is a balancing act. The right amount of branching can
improve productivity by allowing for parallel development. Too
many poorly-defined branches can cause confusion and result in
unnecessary code merges. Not enough branches or resistance
to branching can decrease productivity and keep you from using
Surround SCM to its fullest. The following guidelines can help you
achieve a balanced branching approach.

Choose the correct branch type
Surround SCM includes the following types of branches:

•	 Mainline branch—A top-level branch that contains all source
files, other branches, and repositories. For most organizations,
one mainline branch is sufficient. Use a single mainline branch if
you will need to share files between repositories or branches.

•	 Baseline branch—A public branch used for collaborative
development. Allowing check outs on a baseline branch lets
all users check out and make changes to the baseline code.
Changes made to files in the baseline branch affect everyone
who accesses that branch.

•	 Workspace branch—A private branch that tracks changes
made by an individual user. Other users are not affected by
any changes made in the private workspace branches. Use
workspace branches for features developed by one person.

•	 Snapshot branch—A read-only, static branch that generally
corresponds to a project milestone, such as a QA build or final
release. Most Surround SCM commands, such as check outs,
check ins, and merges, are disabled in snapshot branches. Create
a snapshot branch when you need to capture the state of the
files and the repository structure at a moment in time. You can
create a snapshot branch based on the latest file version, latest
version in a specific workflow state, a label, or a timestamp.

Use repositories for organization and branches for parallel
development
After you set up the repository structure on the mainline branch,
use branching to control releases or for parallel development.
Do not create repositories when you mean to create a branch.
For example, when you are ready to release a product and start
development on a new version, create a branch for the release
code.

The following example shows the correct use of branches and
repositories. The WysiCalc 1.0.x branch is created from the
WysiCalc repository in the WysiCorp Products mainline branch.
When the branch is created, the repositories and files in the
WysiCalc repository on the mainline are copied to the new branch.
Developers can start working on WysiCalc 1.0.x without affecting
the stable code base in the mainline branch.

Figure 4: WysiCalc Documents repository

Figure 5: Correct branch and repository use

Figure 3: WysiCalc repositories

Branching by purpose
While the ideal branching model depends on your business needs,
we recommend using a branch by purpose model. In this model,
you create a branch when you need to provide the software to
groups outside of the development team. You create a branch
for alpha testing or a product release. Branching by purpose also
supports creating a branch for research and development. You can
create a branch for developers to use when evaluating changes
to the code without affecting the stable code base. The following
example shows branching by purpose.

After all WysiCalc features are complete, WysiCorp creates the

WysiCalc 1.0.x baseline branch. Some developers continue working

on the WysiCalc 1.0.x branch, fixing bugs and preparing for release,

while other developers work on the next version of the software on

the mainline branch. When the code is ready for testing, the WysiCalc

1.0.0 Beta snapshot branch is created to document the tested build.

The developers working on the WysiCalc 1.0.x branch can fix bugs

found during beta testing and promote them to the mainline branch

so the developers working on the next release can incorporate them

into the latest code. When the code is ready for release, the WysiCalc

1.0.0 Final Release snapshot branch is created. The developers can

continue performing maintenance on the WysiCalc 1.0.x branch to

fix production-level defects and create maintenance releases without

affecting the parallel development of version 2.0.

Branching late
Branching late goes hand-in-hand with branching by purpose. In
the branch by purpose model, developers work on the mainline
branch until it is time to provide code to another group. In the
previous example, developers worked on the mainline branch until
alpha testing started and the WysiCalc 1.0.x branch was created.

Branching late also reduces the number of merges to perform.
Using the previous example, instead of continuing to work on the
mainline branch to develop WysiCalc version 2, a WysiCalc 2.0.x
branch was created for version 2.0.x development at the same time
the WysiCalc 1.0.x branch was created.

Figure 7: Branch late example

In this case, the developers will have to integrate changes from two
branches into the mainline branch from the beginning of
development on version 2. By branching late, they only need to
integrate changes from one branch into the mainline until they are
ready to begin testing version 2, simplifying the merge process.

Create a branching policy
If multiple users will be creating branches, you should create a
branching policy that specifies when to branch, how to name
branches, how to document branches, who can create branches,
and your sharing strategy. As a general rule, development
managers and release managers should be able to create baseline
branches, while developers should be able create their own
workspace branches. Store the branching policy document in the
top-level repository on the mainline branch so everyone can access
it. Also, create a trigger that emails developers when the document
changes.

When you create a branch, use comments to explain the purpose
of the branch, when changes should be checked in or out, when
changes should be promoted and merged, and who owns the
branch. As the number of branches grows, defining branch
ownership can help developers sort out issues and avoid confusion.

Figure 6: Branch by purpose example

Figure 8: A well-documented branch

Add new repositories to the mainline branch
When you set up Surround SCM or add files for a new project or
product, add the repository and files to the mainline branch. This
keeps the original source code on the mainline branch and allows
you implement branches for specific development purposes from
the mainline. Develop on the mainline branch until there is a need
to create a branch.

After you establish branches, it is best to add new files and
repositories to the mainline branch and rebase to propagate the
new files and repositories to the other branches.

Checking Files In and Out
Create a check in/check out policy
Like the branching policy, a check in/check out policy ensures
developers are working as efficiently as possible. Your policy should
specify the following:

•	 When developers should use exclusive or non-exclusive (multi-
user) check outs

•	 How often to check in files

•	 Who is responsible for performing merges (individual
developers, lead developers, project manager, etc.)

Store this policy in the root repository of the mainline branch
and create a trigger that emails developers when the document
changes.

Check in frequently
Regardless of the type of check outs you use, check files in
frequently, such as when you complete a set of changes or when
you need to share changes with other developers. Make sure you
do not check in code that may not compile or that may break a
build.

Checking in regularly has several benefits. If you are using non-
exclusive check outs, it is necessary to merge more frequently.
Checking in regularly (daily or weekly) reduces the complexity of
these merges and makes it easier to resolve conflicts. Checking in
often also provides access to changes made by other developers
and prevents surprises later in development.

Provide detailed comments on check in
You can enter comments when you check files into Surround SCM.
Your changes and the logic behind them might be clear now, but
will you remember why you made the change two months from
now when you are in the middle of another fix?

Include the following information when you check in files:

•	 The original cause for the change (bug or enhancement)

•	 The bug or defect number fixed

•	 The intention of the change

•	 The methodology used to fix the bug or create the enhancement
and any other alternatives you considered

Grouping Related Changes
Use changelists to group transactions
A changelist, which is a set of files and the actions to be performed
on those files, groups transactions together and treats the files as
one unit. Changelists provide an easy way to track the files that
were changed to fix a defect.

Changelists implement atomic transactions—if one action in a
changelist fails, the entire operation is cancelled and changes are
not committed to the database. Users can also view the history of
changelists and see which files were processed together.

You can add files to a changelist when you add a file, check in a file,
create a repository, remove a file or repository, or rename a file or
repository.

Attach file changes to related issues
If you make file changes to address a defect or issue tracked in
TestTrack or another tool, attach the changed file to the associated
issue during check in. This helps other team members clearly
understand the files that were changed to fix an issue, whether
they are looking at the changes from Surround SCM or the issue
tracking tool. For example, attaching files to issues can help release
managers understand which files to get in the build that includes
the fix, QA managers understand areas that require testing based
on files that changed, and development managers see which files
need to go through code review.

Apply labels to group related files in different repositories
Labels are text tags that mark a file version and make it easy to
retrieve versions marked for a specific reason, such as a defect
fix, build, or release. Use labels if you need to group related
files for future reference, especially if they are stored in different
repositories in a branch.

You can apply labels when add files, get files, check in files,
promote files or branches, duplicate changes to a branch, view a
committed changelist, or view file history.

Merging Branches
Promote or rebase to sync files between related branches
Promoting and rebasing updates related branches with changes
made in a selected branch, ensuring the related branch includes the
most current files and that other users have access to the changes.
All changes made to a file starting at version 1 until a point you
choose, such as the latest version or a timestamp, are merged to
the related branch.

Promoting merges changes from the child branch up to the parent
branch. Promote changes regularly to make sure the latest fixes are
available on the mainline branch. The promotion process resembles
the following example.

At the feature freeze milestone, which is when feature development
for the next WysiCalc release is complete, WysiCorp creates a
baseline branch named WysiCalc 1.0.x from the WysiCalc repository
on the mainline branch.

Feature development for the next major release continues in the
WysiCorp Products mainline branch while other developers fix
defects in the WysiCalc 1.0.x branch. A code freeze branch named
WysiCalc 1.0.0 is created after deciding that WysiCalc is ready for
release. Critical defect fixes for the release are made in the WysiCalc
1.0.0 code freeze branch and promoted to both the WysiCalc 1.0.x
and WysiCorp Products branches.

Rebasing merges changes from the parent branch down to the
child branch. For example, if two developers are working on bug
fixes in workspace branches and one developer completes work
and promotes changes to the parent branch, the other developer
can rebase the changes into their workspace to make sure they are
working with the most current files.

Define the promote and rebase policy as part of your branching
policies.

Duplicate to merge specific changes between any two
branches
If you want to choose a set of changes made in one branch and
apply them to another branch, duplicate the changes instead of
promoting or rebasing. When you duplicate changes, you choose
the changes between two versions to merge into another branch.
Changes made in other versions are ignored. You can also duplicate
changes by changelist, defect, or label. You can duplicate changes
to any other branch in the same mainline branch, not only to a
parent or child branch like promoting and rebasing.

For example, if a developer makes changes in a workspace
branch that fixes a defect related to two different products, she
can duplicate the changes in files attached to the defect to each
product’s baseline branch without unnecessarily merging all other
changes made in her workspace branch to other related branches.

Capturing Milestones
Indicating the code included in builds and releases is a critical step
for maintaining an accurate history of your software development
effort. You can capture these milestones using labels and snapshot
branches.

Use snapshot branches to capture important builds and
releases
A snapshot branch is a read-only, static branch. Create snapshot
branches after successfully completing important builds or
releases. You can create snapshot branches based on the latest file
version, the latest version in a specific workflow state, a label, or a
timestamp.

Snapshot branches make it easy to re-create builds because, unlike
labels, they capture the filenames and repository structure used
when the branch was created. Labels only capture file content and
builds may break if files are renamed or moved in Surround SCM
after successfully completing a build.

Use labels to capture daily builds
If your organization performs daily builds, or even multiple builds
per day, use labels to capture the files included in the build. Using
labels makes it easy to tag the files included in a build and retrieve
them for future use. They also allow you to preserve a history of a
build without adding the clutter of multiple snapshot branches in
the branch tree.

Labels also offer more flexibility than snapshot branches. You can
add files to a label as you work with files or after creating a build.
You can also replace files in a label with other versions over time.
If you use snapshot branches, you cannot make changes after
creating the branch.

Figure 9: Promotion example

© 2011 Seapine Software, Inc. All rights reserved. 0111Cincinnati, Ohio I London, England I Melbourne, Australia I Munich, Germany

Using Triggers
You can use triggers to perform actions before or after a specific
event. Triggers can be used for notifications, validation, custom text
entry, logging, and synchronization.

Pre-event triggers
Pre-event triggers run after a client requests that an event be
performed, but before the event is complete. These triggers can
be used to run server-side executables (scripts and compiled
programs), prevent users from performing file events and display
a message that explains why the event cannot be performed, and
add comments or append text to comments that users enter on file
events.

Use pre-event triggers with caution because they run once per
file and can cause performance issues because the Surround SCM
Server waits for the script to complete before moving to the next
file. Even a one second pre-event script will significantly slow down
the server because it takes an additional second per file that the
trigger fires on.

Post-event triggers
Post-event triggers run after an event is successfully completed
on the Surround SCM Server. These triggers can run server-side
executables, send emails, change custom field values, and change
workflow states. Email triggers use an email template that can be
customized to inform selected users when an event occurs to a
file or a set of files. Post-event triggers should be used unless the
trigger is used for validation.

Configure server access
Because triggers are performed on the server, any scripts they
execute must also be stored on the server. Make sure the processes
the triggers call have the right server permissions to run correctly.

Administering Surround SCM
Use the recommended hardware configurations
To avoid performance issues, use the recommended hardware
configurations in the Surround SCM Server System Requirements
knowledgebase article (www.seapine.com/kb/questions/1173).

Set proper file-level permissions
Users do not need read and write access to the Surround SCM
database. Only the Surround SCM Server requires read/write
access to the database. All access rights are controlled through the
Surround SCM Client. This adds an additional level of security and
prevents users from making changes directly in the database and
bypassing version control.

Adjust caching options to improve performance
Over time, the number of branches in Surround SCM will increase
and you will not access all branches with the same regularity. There
will be branches that developers access every day and others that
are essentially archives. If you start to have performance issues, you
may need to adjust the number of branches stored in the Surround
SCM Server cache.

Branches are cached when the Surround SCM Server starts. By
default, mainline branches are set to Always Cache. Baseline,
snapshot, and workspace branches are set to Cache on Demand.
Cache on Demand, or dynamic, branches are only cached when
users perform actions that access the branch. The most recently
used dynamic branches as of the last server shutdown are cached
at server startup.

Surround SCM automatically manages the cache by unloading
dynamic branches and changing Always Cache branches to Cache
on Demand based on inactivity. If you notice memory issues and
slow server start up times, adjust the server options to control the
cache size and inactivity timeout limits.

Figure 10: Surround SCM Server caching options

http://www.seapine.com/kb/questions/1173

